\
JAKARTA EE

Jakarta Persistence

Jakarta Persistence Team, https://projects.eclipse.org/projects/ee4j.jpa

3.0, September 08, 2020:

Table of Contents

Eclipse Foundation Specification License
Disclaimers
Scope
1. Introduction
1.1. Expert Group
1.2. Document Conventions
2. Entities
2.1. The Entity Class
2.2. Persistent Fields and Properties
2.2.1. Example
2.3. Access Type
2.3.1. Default Access Type
2.3.2. Explicit Access Type
2.3.3. Access Type of an Embeddable Class
2.3.4. Defaulted Access Types of Embeddable Classes and Mapped Superclasses
2.4. Primary Keys and Entity Identity
2.4.1. Primary Keys Corresponding to Derived Identities
2.4.1.1. Specification of Derived Identities
2.4.1.2. Mapping of Derived Identities
2.4.1.3. Examples of Derived Identities
2.5. Embeddable Classes
2.6. Collections of Embeddable Classes and Basic Types
2.7. Map Collections
2.7.1. Map Keys
2.7.2. Map Values
2.8. Mapping Defaults for Non-Relationship Fields or Properties
2.9. Entity Relationships
2.10. Relationship Mapping Defaults
2.10.1. Bidirectional OneToOne Relationships
2.10.2. Bidirectional ManyToOne / OneToMany Relationships
2.10.3. Unidirectional Single-Valued Relationships
2.10.3.1. Unidirectional OneToOne Relationships
2.10.3.2. Unidirectional ManyToOne Relationships
2.10.4. Bidirectional ManyToMany Relationships
2.10.5. Unidirectional Multi-Valued Relationships
2.10.5.1. Unidirectional OneToMany Relationships

© 0 O O O R R W N R

W W W W W W W W W N N DN DN DN DNDN R R R = = = s
© © O U1 = =N O O 0 00 9 39 o O U b= b W W k=L = = O O

2.10.5.2. Unidirectional ManyToMany Relationships
2.11. Inheritance
2.11.1. Abstract Entity Classes
2.11.2. Mapped Superclasses
2.11.3. Non-Entity Classes in the Entity Inheritance Hierarchy
2.12. Inheritance Mapping Strategies
2.12.1. Single Table per Class Hierarchy Strategy
2.12.2. Joined Subclass Strategy
2.12.3. Table per Concrete Class Strategy
2.13. Naming of Database Objects
3. Entity Operations
3.1. EntityManager
3.1.1. EntityManager Interface
3.1.2. Example of Use of EntityManager API
3.2. Entity Instance’s Life Cycle
3.2.1. Entity Instance Creation
3.2.2. Persisting an Entity Instance
3.2.3. Removal
3.2.4. Synchronization to the Database
3.2.5. Refreshing an Entity Instance
3.2.6. Evicting an Entity Instance from the Persistence Context
3.2.7. Detached Entities
3.2.7.1. Merging Detached Entity State
3.2.7.2. Detached Entities and Lazy Loading
3.2.8. Managed Instances
3.2.9. Load State
3.3. Persistence Context Lifetime and Synchronization Type
3.3.1. Synchronization with the Current Transaction
3.3.2. Transaction Commit
3.3.3. Transaction Rollback
3.4. Locking and Concurrency
3.4.1. Optimistic Locking
3.4.2. Version Attributes
3.4.3. Pessimistic Locking
3.4.4. Lock Modes
3.4.4.1. OPTIMISTIC, OPTIMISTIC_FORCE_INCREMENT

3.4.4.2. PESSIMISTIC_READ, PESSIMISTIC_WRITE, PESSIMISTIC_FORCE_INCREMENT

3.4.4.3. Lock Mode Properties and Uses

40
42
42
43
435
46
47
47
47
48
52
52
52
72
72
73
73
74
74
75
76
76
77
77
78
78
79
80
80
81
81
81
82
82
84
84
86
88

3.4.5. OptimisticLockException
3.5. Entity Listeners and Callback Methods
3.5.1. Entity Listeners
3.5.2. Lifecycle Callback Methods
3.5.3. Semantics of the Life Cycle Callback Methods for Entities
3.5.4. Example
3.5.5. Multiple Lifecycle Callback Methods for an Entity Lifecycle Event
3.5.6. Example
3.5.7. Exceptions
3.5.8. Specification of Callback Listener Classes and Lifecycle Methods in the XML Descriptor
3.5.8.1. Specification of Callback Listeners
3.5.8.2. Specification of the Binding of Entity Listener Classes to Entities
3.6. Bean Validation
3.6.1. Automatic Validation Upon Lifecycle Events
3.6.1.1. Enabling Automatic Validation
3.6.1.2. Requirements for Automatic Validation upon Lifecycle Events
3.6.2. Providing the ValidatorFactory
3.7. Entity Graphs
3.7.1. EntityGraph Interface
3.7.2. AttributeNode Interface
3.7.3. Subgraph Interface
3.7.4. Use of Entity Graphs in find and query operations
3.7.4.1. Fetch Graph Semantics
3.7.4.2. Load Graph Semantics
3.8. Type Conversion of Basic Attributes
3.9. Caching
3.9.1. The shared-cache-mode Element
3.9.2. Cache Retrieve Mode and Cache Store Mode Properties
3.10. Query APIs
3.10.1. Query Interface
3.10.2. TypedQuery Interface
3.10.3. Tuple Interface
3.10.4. TupleElement Interface
3.10.5. Parameter Interface
3.10.6. StoredProcedureQuery Interface
3.10.7. Query Execution
3.10.7.1. Example
3.10.8. Queries and Flush Mode

89
89
90
91
92
93
94
94
97
97
97
98
98
98
99
99
100
101
101
105
106
110
111
114
116
119
119
120
122
122
132
138
140
140
141
150
151
151

3.10.9. Queries and Lock Mode
3.10.10. Query Hints
3.10.11. Parameter Objects
3.10.12. Named Parameters
3.10.13. Positional Parameters
3.10.14. Named Queries
3.10.15. Polymorphic Queries
3.10.16. SQL Queries
3.10.16.1. Returning Managed Entities from Native Queries
3.10.16.2. Returning Unmanaged Instances
3.10.16.3. Combinations of Result Types
3.10.16.4. Restrictions
3.10.17. Stored Procedures
3.10.17.1. Named Stored Procedure Queries
3.10.17.2. Dynamically-specified Stored Procedure Queries
3.10.17.3. Stored Procedure Query Execution
3.11. Summary of Exceptions
4. Query Language
4.1. Overview
4.2. Statement Types
4.2.1. Select Statements
4.2.2. Update and Delete Statements
4.3. Abstract Schema Types and Query Domains
4.3.1. Naming
4.3.2. Example
4.4. The FROM Clause and Navigational Declarations
4.4.1. Identifiers
4.4.2. Identification Variables
4.4.3. Range Variable Declarations
4.4.4. Path Expressions
4.4.4.1. Path Expression Syntax
4.4.5. Joins
4.4.5.1. Inner Joins (Relationship Joins)
4.4.5.2. Left Outer Joins
4.4.5.3. Fetch Joins
4.4.6. Collection Member Declarations
4.4.7. FROM Clause and SQL
4.4.8. Polymorphism

152
153
153
153
154
154
154
155
155
159
161
161
161
161
162
162
163
167
167
167
168
168
169
169
170
171
172
173
174
175
176
178
179
179
181
182
182
183

4.4.9. Downcasting 183

4.5. WHERE Clause 184
4.6. Conditional Expressions 184
4.6.1. Literals 184
4.6.2. Identification Variables 185
4.6.3. Path Expressions 185
4.6.4. Input Parameters 185
4.6.4.1. Positional Parameters 186
4.6.4.2. Named Parameters 186
4.6.5. Conditional Expression Composition 186
4.6.6. Operators and Operator Precedence 187
4.6.7. Comparison Expressions 187
4.6.8. Between Expressions 188
4.6.9. In Expressions 189
4.6.10. Like Expressions 190
4.6.11. Null Comparison Expressions 190
4.6.12. Empty Collection Comparison Expressions 191
4.6.13. Collection Member Expressions 191
4.6.14. Exists Expressions 192
4.6.15. All or Any Expressions 192
4.6.16. Subqueries 193
4.6.17. Scalar Expressions 195
4.6.17.1. Arithmetic Expressions 195
4.6.17.2. Built-in String, Arithmetic, and Datetime Functional Expressions 195
4.6.17.3. Invocation of Predefined and User-defined Database Functions 197
4.6.17.4. Case Expressions 198
4.6.17.5. Entity Type Expressions 200

4.7. GROUP BY, HAVING 201
4.8. SELECT Clause 203
4.8.1. Result Type of the SELECT Clause 204
4.8.2. Constructor Expressions in the SELECT Clause 205
4.8.3. Null Values in the Query Result 206
4.8.4. Embeddables in the Query Result 206
4.8.5. Aggregate Functions in the SELECT Clause 207
4.8.5.1. Examples 208
4.8.6. Numeric Expressions in the SELECT Clause 209
4.9. ORDER BY Clause 210

4.10. Bulk Update and Delete Operations 212

4.11. Null Values
4.12. Equality and Comparison Semantics
4.13. Examples
4.13.1. Simple Queries
4.13.2. Queries with Relationships
4.13.3. Queries Using Input Parameters
4.14. BNF
5. Metamodel API
5.1. Metamodel API Interfaces
5.1.1. Metamodel Interface
5.1.2. Type Interface
5.1.3. ManagedType Interface
5.1.4. IdentifiableType Interface
5.1.5. EntityType Interface
5.1.6. EmbeddableType Interface
5.1.7. MappedSuperclassType Interface
5.1.8. BasicType Interface
5.1.9. Bindable Interface
5.1.10. Attribute Interface
5.1.11. SingularAttribute Interface
5.1.12. PluralAttribute Interface
5.1.13. CollectionAttribute Interface
5.1.14. SetAttribute Interface
5.1.15. ListAttribute Interface
5.1.16. MapAttribute Interface
5.1.17. StaticMetamodel Annotation
6. Criteria API
6.1. Overview
6.2. Metamodel
6.2.1. Static Metamodel Classes
6.2.1.1. Canonical Metamodel
6.2.1.2. Example
6.2.2. Bootstrapping
6.3. Criteria API Interfaces
6.3.1. CriteriaBuilder Interface
6.3.2. CommonAbstractCriteria Interface
6.3.3. AbstractQuery Interface

6.3.4. CriteriaQuery Interface

213
214
214
215
215
216
216
224
224
224
225
226
233
235
236
236
237
237
239
240
241
243
243
243
244
245
247
247
247
247
248
249
250
250
250
282
283
287

6.3.5. CriteriaUpdate Interface 294

6.3.6. CriteriaDelete Interface 296
6.3.7. Subquery Interface 298
6.3.8. Selection Interface 302
6.3.9. CompoundSelection Interface 303
6.3.10. Expression Interface 304
6.3.11. Predicate Interface 305
6.3.12. Path Interface 307
6.3.13. FetchParent Interface 309
6.3.14. Fetch Interface 311
6.3.15. From Interface 311
6.3.16. Root Interface 317
6.3.17. Join Interface 317
6.3.18. JoinType 319
6.3.19. Pluraljoin Interface 319
6.3.20. Collection]Join Interface 320
6.3.21. SetJoin Interface 322
6.3.22. ListJoin Interface 323
6.3.23. MapJoin Interface 324
6.3.24. Order Interface 325
6.3.25. ParameterExpression Interface 326
6.4. Criteria Query API Usage 327
6.5. Constructing Criteria Queries 327
6.5.1. CriteriaQuery Creation 327
6.5.2. Query Roots 328
6.5.3. Joins 329
6.5.4. Fetch Joins 331
6.5.5. Path Navigation 331
6.5.6. Restricting the Query Result 333
6.5.7. Downcasting 334
6.5.8. Expressions 335
6.5.8.1. Result Types of Expressions 338
6.5.9. Literals 339
6.5.10. Parameter Expressions 340
6.5.11. Specifying the Select List 340
6.5.11.1. Assigning Aliases to Selection Items 343
6.5.12. Subqueries 344

6.5.13. GroupBy and Having 348

6.5.14. Ordering the Query Results 349

6.5.15. Bulk Update and Delete Operations 351
6.6. Constructing Strongly-typed Queries using the jakarta.persistence.metamodel Interfaces 354
6.7. Use of the Criteria API with Strings to Reference Attributes 355
6.8. Query Modification 357
6.9. Query Execution 358

7. Entity Managers and Persistence Contexts 359
7.1. Persistence Contexts 359
7.2. Obtaining an EntityManager 359

7.2.1. Obtaining an Entity Manager in the Jakarta EE Environment 360

7.2.2. Obtaining an Application-managed Entity Manager 361
7.3. Obtaining an Entity Manager Factory 361

7.3.1. Obtaining an Entity Manager Factory in a Jakarta EE Container 361

7.3.2. Obtaining an Entity Manager Factory in a Java SE Environment 362
7.4. EntityManagerFactory Interface 362
7.5. Controlling Transactions 367

7.5.1. JTA EntityManagers 367

7.5.2. Resource-local EntityManagers 367

7.5.3. The EntityTransaction Interface 368

7.5.4. Example 369
7.6. Container-managed Persistence Contexts 370

7.6.1. Persistence Context Synchronization Type 371

7.6.2. Container-managed Transaction-scoped Persistence Context 372

7.6.3. Container-managed Extended Persistence Context 372

7.6.3.1. Inheritance of Extended Persistence Context 372
7.6.4. Persistence Context Propagation 373
7.6.4.1. Requirements for Persistence Context Propagation 373
7.6.5. Examples 374
7.6.5.1. Container-managed Transaction-scoped Persistence Context 374
7.6.5.2. Container-managed Extended Persistence Context 374

7.7. Application-managed Persistence Contexts 375
7.7.1. Examples 376
7.7.1.1. Application-managed Persistence Context used in Stateless Session Bean 376
7.7.1.2. Application-managed Persistence Context used in Stateless Session Bean 377
7.7.1.3. Application-managed Persistence Context used in Stateful Session Bean 379
7.7.1.4. Application-managed Persistence Context with Resource Transaction 380

7.8. Requirements on the Container 380

7.8.1. Application-managed Persistence Contexts 381

7.8.2. Container Managed Persistence Contexts 381

7.9. Runtime Contracts between the Container and Persistence Provider 381
7.9.1. Container Responsibilities 381
7.9.2. Provider Responsibilities 382

7.10. Cache Interface 383

7.11. PersistenceUnitUtil Interface 384

8. Entity Packaging 387

8.1. Persistence Unit 387

8.2. Persistence Unit Packaging 387
8.2.1. persistence.xml file 388

8.2.1.1. name 389
8.2.1.2. transaction-type 389
8.2.1.3. description 390
8.2.1.4. provider 390
8.2.1.5. jta-data-source, non-jta-data-source 390
8.2.1.6. mapping-file, jar-file, class, exclude-unlisted-classes 390
8.2.1.7. shared-cache-mode 394
8.2.1.8. validation-mode 394
8.2.1.9. properties 394
8.2.1.10. Examples 396
8.2.2. Persistence Unit Scope 398
8.3. persistence.xml Schema 399
9. Container and Provider Contracts for Deployment and Bootstrapping 407

9.1.Jakarta EE Deployment 407

9.2. Bootstrapping in Java SE Environments 408
9.2.1. Schema Generation 409

9.3. Determining the Available Persistence Providers 409
9.3.1. PersistenceProviderResolver interface 410
9.3.2. PersistenceProviderResolverHolder class 411

9.4. Schema Generation 413
9.4.1. Data Loading 415

9.5. Responsibilities of the Persistence Provider 416
9.5.1. jakarta.persistence.spi.PersistenceProvider 416
9.5.2. jakarta.persistence.spi.ProviderUtil 419

9.6. jakarta.persistence.spi.PersistenceUnitInfo Interface 421
9.6.1. jakarta.persistence.spi.ClassTransformer Interface 428

9.7.jakarta.persistence.Persistence Class 430

9.8. PersistenceUtil Interface 435

9.8.1. Contracts for Determining the Load State of an Entity or Entity Attribute 436

10. Metadata Annotations 438
10.1. Entity 438
10.2. Callback Annotations 438
10.3. EntityGraph Annotations 439

10.3.1. NamedEntityGraph and NamedEntityGraphs Annotations 440
10.3.2. NamedAttributeNode Annotation 441
10.3.3. NamedSubgraph Annotation 441
10.4. Annotations for Queries 442
10.4.1. NamedQuery Annotation 442
10.4.2. NamedNativeQuery Annotation 443
10.4.3. NamedStoredProcedureQuery Annotation 444
10.4.4. Annotations for SQL Result Set Mappings 446
10.5. References to EntityManager and EntityManagerFactory 447
10.5.1. PersistenceContext Annotation 448
10.5.2. PersistenceUnit Annotation 449
10.6. Annotations for Type Converter Classes 450

11. Metadata for Object/Relational Mapping 452

11.1. Annotations for Object/Relational Mapping 452
11.1.1. Access Annotation 452
11.1.2. AssociationOverride Annotation 453
11.1.3. AssociationOverrides Annotation 457
11.1.4. AttributeOverride Annotation 459
11.1.5. AttributeOverrides Annotation 463
11.1.6. Basic Annotation 464
11.1.7. Cacheable Annotation 465
11.1.8. CollectionTable Annotation 466
11.1.9. Column Annotation 469
11.1.10. Convert Annotation 472
11.1.11. Converts Annotation 476
11.1.12. DiscriminatorColumn Annotation 477
11.1.13. DiscriminatorValue Annotation 478
11.1.14. ElementCollection Annotation 480
11.1.15. Embeddable Annotation 481
11.1.16. Embedded Annotation 482
11.1.17. EmbeddedId Annotation 483
11.1.18. Enumerated Annotation 484

11.1.19. ForeignKey Annotation 486

11.1.20
11.1.21
11.1.22
11.1.23
11.1.24
11.1.25
11.1.26
11.1.27

11.1.28.
11.1.29.
11.1.30.
11.1.31.
11.1.32.
11.1.33.
11.1.34.
11.1.35.
11.1.36.
11.1.37.
11.1.38.
11.1.39.
11.1.40.
11.1.41.
11.1.42.
11.1.43.
11.1.44.
11.1.45.
11.1.46.
11.1.47.
11.1.48.
11.1.49.
11.1.50.
11.1.51.
11.1.52.
11.1.53.

11.1.54
11.1.55
11.1.56

. GeneratedValue Annotation

. Id Annotation

. IdClass Annotation

. Index Annotation

. Inheritance Annotation

. JoinColumn Annotation

. JoinColumns Annotation

. JoinTable Annotation

Lob Annotation

ManyToMany Annotation
ManyToOne Annotation
MapKey Annotation
MapKeyClass Annotation
MapKeyColumn Annotation
MapKeyEnumerated Annotation
MapKeyJoinColumn Annotation
MapKeyJoinColumns Annotation
MapKeyTemporal Annotation
MappedSuperclass Annotation
Mapsld Annotation

OneToMany Annotation
OneToOne Annotation

OrderBy Annotation
OrderColumn Annotation
PrimaryKeyJoinColumn Annotation
PrimaryKeyJoinColumns Annotation
SecondaryTable Annotation
SecondaryTables Annotation
SequenceGenerator Annotation
SequenceGenerators Annotation
Table Annotation
TableGenerator Annotation
TableGenerators Annotation
Temporal Annotation

. Transient Annotation

. UniqueConstraint Annotation

. Version Annotation

11.2. Object/Relational Metadata Used in Schema Generation

487
488
489
490
491
492
498
499
501
502
506
509
511
513
517
518
525
526
526
527
528
531
535
538
541
543
545
548
549
550
551
552
535
535
556
557
558
558

11.2.1. Table-level elements 560

11.2.1.1. Table 560
11.2.1.2. Inheritance 560
11.2.1.3. SecondaryTable 560
11.2.1.4. CollectionTable 560
11.2.1.5. JoinTable 561
11.2.1.6. TableGenerator 561
11.2.2. Column-level elements 561
11.2.2.1. Column 561
11.2.2.2. MapKeyColumn 562
11.2.2.3. Enumerated, MapKeyEnumerated 562
11.2.2.4. Temporal, MapKeyTemporal 562
11.2.2.5. Lob 562
11.2.2.6. OrderColumn 562
11.2.2.7. DiscriminatorColumn 563
11.2.2.8. Version 563
11.2.3. Primary Key mappings 563
11.2.3.1.1d 563
11.2.3.2. EmbeddedId 564
11.2.3.3. GeneratedValue 564
11.2.4. Foreign Key Column Mappings 564
11.2.4.1. JoinColumn 564
11.2.4.2. MapKeyJoinColumn 565
11.2.4.3. PrimaryKeyJoinColumn 565
11.2.4.4. ForeignKey 565
11.2.5. Other Elements 566
11.2.5.1. SequenceGenerator 566
11.2.5.2. Index 566
11.2.5.3. UniqueConstraint 566
11.3. Examples of the Application of Annotations for Object/Relational Mapping 566
11.3.1. Examples of Simple Mappings 566
11.3.2. A More Complex Example 570
12. XML Object/Relational Mapping Descriptor 578
12.1. Use of the XML Descriptor 578
12.2. XML Overriding Rules 578
12.2.1. persistence-unit-defaults Subelements 579
12.2.1.1. schema 579

12.2.1.2. catalog 579

12.2.1.3. delimited-identifiers 579

12.2.1.4. access 579
12.2.1.5. cascade-persist 580
12.2.1.6. entity-listeners 580
12.2.2. Other Subelements of the entity-mappings element 580
12.2.2.1. package 580
12.2.2.2. schema 580
12.2.2.3. catalog 580
12.2.2.4. access 581
12.2.2.5. sequence-generator 581
12.2.2.6. table-generator 581
12.2.2.7. named-query 581
12.2.2.8. named-native-query 581
12.2.2.9. named-stored-procedure-query 582
12.2.2.10. sql-result-set-mapping 582
12.2.2.11. entity 582
12.2.2.12. mapped-superclass 582
12.2.2.13. embeddable 582
12.2.2.14. converter 583
12.2.3. entity Subelements and Attributes 583
12.2.3.1. metadata-complete 583
12.2.3.2. access 583
12.2.3.3. cacheable 583
12.2.3.4. name 583
12.2.3.5. table 584
12.2.3.6. secondary-table 584
12.2.3.7. primary-key-join-column 584
12.2.3.8. id-class 584
12.2.3.9. inheritance 584
12.2.3.10. discriminator-value 584
12.2.3.11. discriminator-column 585
12.2.3.12. sequence-generator 585
12.2.3.13. table-generator 585
12.2.3.14. attribute-override 585
12.2.3.15. association-override 585
12.2.3.16. convert 586
12.2.3.17. named-entity-graph 586

12.2.3.18. named-query 586

12.2.3.19. named-native-query
12.2.3.20. named-stored-procedure-query
12.2.3.21. sql-result-set-mapping
12.2.3.22. exclude-default-listeners
12.2.3.23. exclude-superclass-listeners
12.2.3.24. entity-listeners
12.2.3.25. pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-
load
12.2.3.26. attributes
12.2.4. mapped-superclass Subelements and Attributes
12.2.4.1. metadata-complete
12.2.4.2. access
12.2.4.3. id-class
12.2.4.4. exclude-default-listeners
12.2.4.5. exclude-superclass-listeners
12.2.4.6. entity-listeners
12.2.4.7. pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-
load
12.2.4.8. attributes
12.2.5. embeddable Subelements and Attributes

12.2.5.1. metadata-complete
12.2.5.2. access
12.2.5.3. attributes

12.3. XML Schema

Related Documents
Appendix A: Revision History
A.1. Maintenance Release Draft
A.2.Jakarta Persistence 3.0

586
586
587
587
587
587

587
587
589
589
589
589
589
590
590

590
590
592
592
592
592
593
642
643
643
644

Eclipse Foundation Specification License

Specification: Jakarta Persistence
Version: 3.0
Status: Final Release

Release: September 08, 2020

Copyright (c) 2019, 2020 Eclipse Foundation.

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

¢ link or URL to the original Eclipse Foundation document.

« All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation,
Inc. [url to this license]”

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright (c) 2018 Eclipse Foundation. This software or document includes material copied from or
derived from [title and URI of the Eclipse Foundation specification document]."

Jakarta Persistence 1

Eclipse Foundation Specification License

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

2 Jakarta Persistence

Scope

Scope

Jakarta Persistence defines a standard for management of persistence and object/relational mapping in
Java® environments.

Jakarta Persistence 3

1.1. Expert Group

Chapter 1. Introduction

This document is the specification of the Jakarta API for the management of persistence and
object/relational mapping with Jakarta EE and Java SE. The technical objective of this work is to
provide an object/relational mapping facility for the Java application developer using a Java domain
model to manage a relational database.

The Jakarta Persistence 3.0 specification is the first release after moving the project to Eclipse
Foundation. All APIs are moved from javax.* package to jakarta.* package. All properties containing
javax as part of the name are renamed the way that javax is replaced with jakarta.

The Java Persistence 2.2 specification enhances the Jakarta Persistence API with support for repeating
annotations; injection into attribute converters; support for mapping of the java.time.LocalDate,
java.time.LocalTime, java.time.LocalDateTime, java.time.OffsetTime, and java.time.OffsetDateTime types;
and methods to retrieve the results of Query and TypedQuery as streams.

The Java Persistence 2.1 specification added support for schema generation, type conversion methods,
use of entity graphs in queries and find operations, unsynchronized persistence contexts, stored
procedure invocation, and injection into entity listener classes. It also includes enhancements to the
Java Persistence query language, the Criteria API, and to the mapping of native queries.

1.1. Expert Group

This revision to the JPA specification is based on JPA 2.1, whose work was conducted as part of JSR 338
under the Java Community Process Program. This specification is the result of the collaborative work
of the members of the JSR 338 Expert Group: akquinet tech@Spree: Michael Bouschen; Ericsson:
Nicolas Seyvet; IBM: Kevin Sutter, Pinaki Poddar; OW2: Florent Benoit; Oracle: Linda DeMichiel,
Gordon Yorke, Michael Keith; Pramati Technologies: Deepak Anupalli; Red Hat, Inc.: Emmanuel
Bernard, Steve Ebersole, Scott Marlow; SAP AG: Rainer Schweigkoffer; Sybase: Evan Ireland; Tmax Soft
Inc.: Miju Byon; Versant: Christian von Kutzleben; VMware: Oliver Gierke; individual members:
Matthew Adams; Adam Bien; Bernd Mueller; Werner Keil.

The work of the JSR 338 Expert Group was conducted using the jpa-spec.java.net project.

1.2. Document Conventions

The regular Times font is used for information that is prescriptive by this specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes describing
typical use, or notes clarifying the text with prescriptive specification.

A monospaced font is used for code examples and to specify the BNF of the Jakarta Persistence query
language.

This document is written in terms of the use of Java language metadata annotations. An XML

4 Jakarta Persistence

1.2. Document Conventions

descriptor (as specified in Chapter 12) may be used as an alternative to annotations or to augment or
override annotations. The elements of this descriptor mirror the annotations and have the same
semantics. When semantic requirements are written in terms of annotations, it should be understood
that the same semantics apply when the XML descriptor is used as an alternative.

Jakarta Persistence 5

2.1. The Entity Class

Chapter 2. Entities

An entity is a lightweight persistent domain object.

The primary programming artifact is the entity class. An entity class may make use of auxiliary classes
that serve as helper classes or that are used to represent the state of the entity.

This chapter describes requirements on entity classes and instances.

2.1. The Entity Class

The entity class must be annotated with the Entity annotation or denoted in the XML descriptor as an
entity.

The entity class must have a no-arg constructor. The entity class may have other constructors as well.
The no-arg constructor must be public or protected.

The entity class must be a top-level class. An enum or interface must not be designated as an entity.

The entity class must not be final. No methods or persistent instance variables of the entity class may
be final.

If an entity instance is to be passed by value as a detached object (e.g., through a remote interface), the
entity class must implement the Serializable interface.

Entities support inheritance, polymorphic associations, and polymorphic queries.

Both abstract and concrete classes can be entities. Entities may extend non-entity classes as well as
entity classes, and non-entity classes may extend entity classes.

The persistent state of an entity is represented by instance variables, which may correspond to
JavaBeans properties. An instance variable must be directly accessed only from within the methods of
the entity by the entity instance itself. Instance variables must not be accessed by clients of the entity.
The state of the entity is available to clients only through the entity’s methods—i.e., accessor methods
(getter/setter methods) or other business methods.

2.2. Persistent Fields and Properties

The persistent state of an entity is accessed by the persistence provider runtime' either via JavaBeans
style property accessors (“property access”) or via instance variables (“field access”). Whether
persistent properties or persistent fields or a combination of the two is used for the provider’s access
to a given class or entity hierarchy is determined as described in Section 2.3.

Terminology Note: The persistent fields and properties of an entity class are generically referred to in
this document as the “attributes” of the class.

6 Jakarta Persistence

2.2. Persistent Fields and Properties

The instance variables of a class must be private, protected, or package visibility independent of
whether field access or property access is used. When property access is used, the property accessor
methods must be public or protected.

It is required that the entity class follow the method signature conventions for JavaBeans read/write
properties (as defined by the JavaBeans Introspector class) for persistent properties when property
access is used.

In this case, for every persistent property property of type T of the entity, there is a getter method,
getProperty, and setter method setProperty. For boolean properties, isProperty may be used as an
alternative name for the getter method."”

For single-valued persistent properties, these method signatures are:

T getProperty()

void setProperty(T t)

Collection-valued persistent fields and properties must be defined in terms of one of the following
collection-valued interfaces regardless of whether the entity class otherwise adheres to the JavaBeans
method conventions noted above and whether field or property access is used: java.util.Collection,
java.util.Set, java.utilList ', java.util.Map. The collection implementation type may be used by the
application to initialize fields or properties before the entity is made persistent. Once the entity
becomes managed (or detached), subsequent access must be through the interface type.

Terminology Note: The terms “collection” and “collection-valued” are used in this specification to
denote any of the above types unless further qualified. In cases where a java.util.Collection type (or one
of its subtypes) is to be distinguished, the type is identified as such. The terms “map” and “map
collection” are used to apply to a collection of type java.util. Map when a collection of type java.util. Map
needs to be distinguished as such.

For collection-valued persistent properties, type T must be one of these collection interface types in the
method signatures above. Use of the generic variants of these collection types is encouraged (for
example, Set<Order>).

In addition to returning and setting the persistent state of the instance, property accessor methods may
contain other business logic as well, for example, to perform validation. The persistence provider
runtime executes this logic when property-based access is used.

Caution should be exercised in adding business logic to the accessor methods when property access is
used. The order in which the persistence provider runtime calls these methods when loading or storing
persistent state is not defined. Logic contained in such methods therefore should not rely upon a
specific invocation order.

If property access is used and lazy fetching is specified, portable applications should not directly access
the entity state underlying the property methods of managed instances until after it has been fetched

Jakarta Persistence 7

2.2. Persistent Fields and Properties

by the persistence provider."

If a persistence context is joined to a transaction, runtime exceptions thrown by property accessor
methods cause the current transaction to be marked for rollback; exceptions thrown by such methods
when used by the persistence runtime to load or store persistent state cause the persistence runtime to
mark the current transaction for rollback and to throw a PersistenceException that wraps the
application exception.

Entity subclasses may override the property accessor methods. However, portable applications must
not override the object/relational mapping metadata that applies to the persistent fields or properties
of entity superclasses.

The persistent fields or properties of an entity may be of the following types: Java primitive types,
java.lang.String, other Java serializable types (including wrappers of the primitive types,
java.math.Biginteger, java.math.BigDecimal , java.utilDate, java.util.Calendar”, java.sqlDate,
java.sql.Time, java.sql.Timestamp, byte[], Byte[], char[], Character[], java.time.LocalDate,
java.time.LocalTime, java.time.LocalDateTime, java.time.OffsetTime, java.time.OffsetDateTime, and user-
defined types that implement the Serializable interface); enums; entity types; collections of entity
types; embeddable classes (see Section 2.5); collections of basic and embeddable types (see Section 2.6).

Object/relational mapping metadata may be specified to customize the object/relational mapping and
the loading and storing of the entity state and relationships. See Chapter 11.

2.2.1. Example

public class Customer implements Serializable {
private Long 1id;
private String name;
private Address address;
private Collection<Order> orders = new HashSet();
private Set<PhoneNumber> phones = new HashSet();

// No-arg constructor
public Customer() {}

// property access is used
public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public String getName() {

8 Jakarta Persistence

2.3. Access Type

return name;

}

public void setName(String name) {
this.name = name;

}

public Address getAddress() {
return address;

}

public void setAddress(Address address) {
this.address = address;

}

@0neToMany
public Collection<Order> getOrders() {
return orders;

}

public void setOrders(Collection<Order> orders) {
this.orders = orders;

}

@ManyToMany
public Set<PhoneNumber> getPhones() {
return phones;

}

public void setPhones(Set<PhoneNumber> phones) {
this.phones = phones;

}

// Business method to add a phone number to the customer
public void addPhone(PhoneNumber phone) {
this.getPhones().add(phone);

// Update the phone entity instance to refer to this customer
phone.addCustomer(this);

2.3. Access Type

Jakarta Persistence 9

2.3. Access Type

2.3.1. Default Access Type

By default, a single access type (field or property access) applies to an entity hierarchy. The default
access type of an entity hierarchy is determined by the placement of mapping annotations on the
attributes of the entity classes and mapped superclasses of the entity hierarchy that do not explicitly
specify an access type. An access type is explicitly specified by means of the Access annotation', as
described in Section 2.3.2.

When annotations are used to define a default access type, the placement of the mapping annotations
on either the persistent fields or persistent properties of the entity class specifies the access type as
being either field- or property-based access respectively.

When field-based access is used, the object/relational mapping annotations for the entity class
annotate the instance variables, and the persistence provider runtime accesses instance variables
directly. All non- transient instance variables that are not annotated with the Transient annotation are
persistent.

When property-based access is used, the object/relational mapping annotations for the entity class
annotate the getter property accessors'’, and the persistence provider runtime accesses persistent state
via the property accessor methods. All properties not annotated with the Transient annotation are
persistent.

Mapping annotations must not be applied to fields or properties that are transient or Transient.

All such classes in the entity hierarchy whose access type is defaulted in this way must be consistent in
their placement of annotations on either fields or properties, such that a single, consistent default
access type applies within the hierarchy. Any embeddable classes used by such classes will have the
same access type as the default access type of the hierarchy unless the Access annotation is specified as
defined below.

It is an error if a default access type cannot be determined and an access type is not explicitly specified
by means of annotations or the XML descriptor. The behavior of applications that mix the placement of
annotations on fields and properties within an entity hierarchy without explicitly specifying the Access
annotation is undefined.

2.3.2. Explicit Access Type

An access type for an individual entity class, mapped superclass, or embeddable class can be specified
for that class independent of the default for the entity hierarchy by means of the Access annotation
applied to the class. This explicit access type specification does not affect the access type of other entity
classes or mapped superclasses in the entity hierarchy. The following rules apply:

* When Access(FIELD) is applied to an entity class, mapped superclass, or embeddable class,
mapping annotations may be placed on the instance variables of that class, and the persistence
provider runtime accesses persistent state via the instance variables defined by the class. All non-
transient instance variables that are not annotated with the Transient annotation are persistent.

10 Jakarta Persistence

2.4. Primary Keys and Entity Identity

When Access(FIELD) is applied to such a class, it is possible to selectively designate individual
attributes within the class for property access. To specify a persistent property for access by the
persistence provider runtime, that property must be designated Access(PROPERTY).” The behavior
is undefined if mapping annotations are placed on any properties defined by the class for which
Access(PROPERTY) is not specified. Persistent state inherited from superclasses is accessed in
accordance with the access types of those superclasses.

* When Access(PROPERTY) is applied to an entity class, mapped superclass, or embeddable class,
mapping annotations may be placed on the properties of that class, and the persistence provider
runtime accesses persistent state via the properties defined by that class. All properties that are not
annotated with the Transient annotation are persistent. When Access(PROPERTY) is applied to such
a class, it is possible to selectively designate individual attributes within the class for instance
variable access. To specify a persistent instance variable for access by the persistence provider
runtime, that instance variable must be designated Access(FIELD). The behavior is undefined if
mapping annotations are placed on any instance variables defined by the class for which
Access(FIELD) is not specified. Persistent state inherited from superclasses is accessed in
accordance with the access types of those superclasses.

Note that when access types are combined within a class, the Transient annotation should be used to
avoid duplicate persistent mappings.

2.3.3. Access Type of an Embeddable Class

The access type of an embeddable class is determined by the access type of the entity class, mapped
superclass, or embeddable class in which it is embedded (including as a member of an element
collection) independent of whether the access type of the containing class has been explicitly specified
or defaulted. A different access type for an embeddable class can be specified for that embeddable
class by means of the Access annotation as described above.

2.3.4. Defaulted Access Types of Embeddable Classes and Mapped Superclasses

Care must be exercised when defining an embeddable class or mapped superclass which is used both
in a context of field access and in a context of property access and whose access type is not explicitly
specified by means of the Access annotation or XML mapping file.

Such classes should be defined so that the number, names, and types of the resulting persistent
attributes are identical, independent of the access type in use. The behavior of such classes whose
attributes are not independent of access type is otherwise undefined with regard to use with the
metamodel API if they occur in contexts of differing access types within the same persistence unit.

2.4. Primary Keys and Entity Identity
Every entity must have a primary key.

The primary key must be defined on the entity class that is the root of the entity hierarchy or on a
mapped superclass that is a (direct or indirect) superclass of all entity classes in the entity hierarchy.

Jakarta Persistence 11

2.4. Primary Keys and Entity Identity

The primary key must be defined exactly once in an entity hierarchy.

* A primary key corresponds to one or more fields or properties (“attributes”) of the entity class.

* A simple (i.e., non-composite) primary key must correspond to a single persistent field or property
of the entity class. The Id annotation or id XML element must be used to denote a simple primary
key. See Section 11.1.21.

* A composite primary key must correspond to either a single persistent field or property or to a set
of such fields or properties as described below. A primary key class must be defined to represent a
composite primary key. Composite primary keys typically arise when mapping from legacy
databases when the database key is comprised of several columns. The EmbeddedId or IdClass
annotation is used to denote a composite primary key. See Section 11.1.17 and Section 11.1.22.

A simple primary key or a field or property of a composite primary key should be one of the following
types: any Java primitive type; any primitive wrapper type; java.lang.String; java.util.Date;
java.sql.Date; java.math.BigDecimal; java.math.BigInteger.” If the primary key is a composite primary
key derived from the primary key of another entity, the primary key may contain an attribute whose
type is that of the primary key of the referenced entity as described in Section 2.4.1. Entities whose
primary keys use types other than these will not be portable. If generated primary keys are used, only
integral types will be portable. If java.util.Date is used as a primary key field or property, the temporal
type should be specified as DATE.

The following rules apply for composite primary keys:

* The primary key class must be public and must have a public no-arg constructor.

* The access type (field- or property-based access) of a primary key class is determined by the access
type of the entity for which it is the primary key unless the primary key is a embedded id and a
different access type is specified. See Section Section 2.3.

» If property-based access is used, the properties of the primary key class must be public or
protected.

* The primary key class must be serializable.

» The primary key class must define equals and hashCode methods. The semantics of value equality
for these methods must be consistent with the database equality for the database types to which
the key is mapped.

* A composite primary key must either be represented and mapped as an embeddable class (see
Section 11.1.17) or must be represented as an id class and mapped to multiple fields or properties
of the entity class (see Section 11.1.22).

* If the composite primary key class is represented as an id class, the names of primary key fields or
properties in the primary key class and those of the entity class to which the id class is mapped
must correspond and their types must be the same.

* A primary key that corresponds to a derived identity must conform to the rules of Section 2.4.1.

The value of its primary key uniquely identifies an entity instance within a persistence context and to

12 Jakarta Persistence

2.4. Primary Keys and Entity Identity

EntityManager operations as described in Chapter 3. The application must not change the value of the
primary key"”. The behavior is undefined if this occurs.""

2.4.1. Primary Keys Corresponding to Derived Identities

The identity of an entity may be derived from the identity of another entity (the “parent” entity) when
the former entity (the “dependent” entity) is the owner of a many-to-one or one-to-one relationship to
the parent entity and a foreign key maps the relationship from dependent to parent.

If a many-to-one or one-to-one entity relationship corresponds to a primary key attribute, the entity
containing this relationship cannot be persisted without the relationship having been assigned an
entity since the identity of the entity containing the relationship is derived from the referenced entity.

Derived identities may be captured by means of simple primary keys or by means of composite
primary keys as described in Section 2.4.1.1 below.

If the dependent entity class has primary key attributes in addition to those corresponding to the
parent’s primary key or if the parent has a composite primary key, an embedded id or id class must be
used to specify the primary key of the dependent entity. It is not necessary that parent entity and
dependent entity both use embedded ids or both use id classes to represent composite primary keys
when the parent has a composite key.

A dependent entity may have more than one parent entity.

2.4.1.1. Specification of Derived Identities

If the dependent entity uses an id class to represent its primary key, one of the two following rules
must be observed:

» The names of the attributes of the id class and the Id attributes of the dependent entity class must
correspond as follows:

o The Id attribute in the entity class and the corresponding attribute in the id class must have the
same name.

o If an Id attribute in the entity class is of basic type, the corresponding attribute in the id class
must have the same type.

o If an Id attribute in the entity is a many-to-one or one-to-one relationship to a parent entity, the
corresponding attribute in the id class must be of the same Java type as the id class or
embedded id of the parent entity (if the parent entity has a composite primary key) or the type
of the Id attribute of the parent entity (if the parent entity has a simple primary key).

 If the dependent entity has a single primary key attribute (i.e., the relationship attribute), the id
class specified by the dependent entity must be the same as the primary key class of the parent
entity. The Id annotation is applied to the relationship to the parent entity."”

If the dependent entity uses an embedded id to represent its primary key, the attribute in the

Jakarta Persistence 13

2.4. Primary Keys and Entity Identity

embedded id corresponding to the relationship attribute must be of the same type as the primary key
of the parent entity and must be designated by the Mapsld annotation applied to the relationship
attribute. The value element of the MapsId annotation must be used to specify the name of the attribute
within the embedded id to which the relationship attribute corresponds. If the embedded id of the
dependent entity is of the same Java type as the primary key of the parent entity, the relationship
attribute maps both the relationship to the parent and the primary key of the dependent entity, and in
this case the MapsId annotation is specified without the value element.""

If the dependent entity has a single primary key attribute (i.e, the relationship attribute or an attribute
that corresponds to the relationship attribute) and the primary key of the parent entity is a simple
primary key, the primary key of the dependent entity is a simple primary key of the same type as that
of the parent entity (and neither EmbeddedId nor IdClass is specified). In this case, either (1) the
relationship attribute is annotated Id, or (2) a separate Id attribute is specified and the relationship
attribute is annotated MapsId (and the value element of the MapsId annotation is not specified).

2.4.1.2. Mapping of Derived Identities

A primary key attribute that is derived from the identity of a parent entity is mapped by the
corresponding relationship attribute. The default mapping for this relationship is as specified in
Section 2.10. In the case where a default mapping does not apply or where a default mapping is to be
overridden, the JoinColumn or JoinColumns annotation is used on the relationship attribute.

If the dependent entity uses an embedded id to represent its primary key, the AttributeOverride
annotation may be used to override the default mapping of embedded id attributes that do not
correspond to the relationship attributes mapping the derived identity. The embedded id attributes
that correspond to the relationship are treated by the provider as “read only”—that is, any updates to
them on the part of the application are not propagated to the database.

If the dependent uses an id class, the Column annotation may be used to override the default mapping
of Id attributes that are not relationship attributes.

2.4.1.3. Examples of Derived Identities

Example 1:

The parent entity has a simple primary key:

public class Employee {
long empld;
String empName;

/] ...

Case (a): The dependent entity uses IdClass to represent a composite key:

14 Jakarta Persistence

2.4. Primary Keys and Entity Identity

public class DependentId {
String name; // matches name of @Id attribute
long emp; // matches name of @Id attribute and type of Employee PK

}

@Entity

@IdClass(DependentId.class)

public class Dependent {
@Id String name;

// 1d attribute mapped by join column default
©@Id @ManyToOne
Employee emp;

/] ...

Sample query:

SELECT d
FROM Dependent d
WHERE d.name = 'Joe' AND d.emp.empName = 'Sam'

Case(b): The dependent entity uses EmbeddedId to represent a composite key:

@Embeddable
public class DependentId {

String name;

long empPK; // corresponds to PK type of Employee
¥

@Entity

public class Dependent {
@EmbeddedId DependentId 1id;

// id attribute mapped by join column default
@MapsId("empPK") // maps empPK attribute of embedded id
@ManyToOne

Employee emp;

/] ...

Sample query:

Jakarta Persistence 15

2.4. Primary Keys and Entity Identity

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.emp.empName = 'Sam’

Example 2:

The parent entity uses IdClass:

public class Employeeld {
String firstName;
String lastName;

/] ...
}

@Entity

@ldClass(Employeeld.class)

public class Employee {
@Id String firstName
@Id String lastName

/] ...

Case (a): The dependent entity uses IdClass:

16 Jakarta Persistence

2.4. Primary Keys and Entity Identity

public class DependentId {
String name; // matches name of attribute
Employeeld emp; //matches name of attribute and type of Employee PK

}

@Entity
@IdClass(DependentId.class)
public class Dependent {
@Id
String name;

@Id

@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="f1irstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")

1))

@ManyToOne
Employee emp;

Sample query:

SELECT d
FROM Dependent d
WHERE d.name = 'Joe' AND d.emp.firstName = 'Sam’

Case (b): The dependent entity uses EmbeddedId. The type of the empPK attribute is the same as that of
the primary key of Employee. The Employeeld class needs to be annotated Embeddable or denoted as an
embeddable class in the XML descriptor.

Jakarta Persistence 17

2.4. Primary Keys and Entity Identity

@Embeddable

public class DependentId {
String name;
Employeeld empPK;

}
@Entity
public class Dependent {
@EmbeddedId
DependentId 1id;
@MapsId("empPK")
@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="firstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")
b
@ManyToOne
Employee emp;
/] ...
}
Sample query:
SELECT d

FROM Dependent d
WHERE d.id.name = 'Joe' AND d.emp.firstName = 'Sam'

Note that the following alternative query will yield the same result:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.id.empPK.firstName = 'Sam'

Example 3:

The parent entity uses EmbeddedId:

18 Jakarta Persistence

2.4. Primary Keys and Entity Identity

@Embeddable

public class Employeeld {
String firstName;
String lastName;

/] ...

}

@Entity

public class Employee {
@EmbeddedId
Employeeld empld;
/] ...

}

Case (a): The dependent entity uses IdClass:

public class DependentId {
String name; // matches name of @Id attribute
Employeeld emp; // matches name of @Id attribute and type of embedded id of Employee

}

@Entity

@IdClass(DependentId.class)

public class Dependent {
@Id
@Column(name="dep_name") // default column name is overridden
String name;

@Id

@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="f1irstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")

1))
@ManyToOne Employee
emp;
}
Sample query:

Jakarta Persistence 19

2.4. Primary Keys and Entity Identity

SELECT d
FROM Dependent d
WHERE d.name = 'Joe' and d.emp.empIld.firstName = 'Sam'

Case (b): The dependent entity uses EmbeddedId:

@Embeddable
public class DependentId {
String name;
Employeeld empPK; // corresponds to PK type of Employee

}

@Entity

public class Dependent {
// default column name for "name" attribute is overridden
EAttributeOverride(name="name", column=@Column(name="dep_name"))
@EmbeddedId DependentId 1id;

@MapsId("empPK")

@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="f1irstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")

})
@ManyToOne

Employee emp;

/] ...

Sample query:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' and d.emp.empld.firstName = 'Sam'

Note that the following alternative query will yield the same result:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.id.empPK.firstName = 'Sam'

Example 4:

20 Jakarta Persistence

2.4. Primary Keys and Entity Identity

The parent entity has a simple primary key:

public class Person {
String ssn;

/] ...

Case (a): The dependent entity has a single primary key attribute which is mapped by the relationship
attribute. The primary key of MedicalHistory is of type String.

public class MedicalHistory {
// default join column name is overridden

(name="FK")
Person patient;

/] ...

Sample query:

SELECT m
FROM MedicalHistory m
WHERE m.patient.ssn = '123-45-6789'

Case (b): The dependent entity has a single primary key attribute corresponding to the relationship
attribute. The primary key attribute is of the same basic type as the primary key of the parent entity.
The MapsId annotation applied to the relationship attribute indicates that the primary key is mapped
by the relationship attribute."”

Jakarta Persistence 21

2.4. Primary Keys and Entity Identity

@Entity
public class MedicalHistory {
eId
String id; // overriding not allowed

/] ...

// default join column name is overridden
@MapsId

@JoinColumn(name="FK")

@0neToOne

Person patient;

/] ...

Sample query:

SELECT m
FROM MedicalHistory m WHERE m.patient.ssn = '123-45-6789"'

Example 5:

The parent entity uses IdClass. The dependent’s primary key class is of same type as that of the parent
entity.

public class PersonId {
String firstName;
String lastName;

¥

@Entity
@IdClass(Personld.class)
public class Person {

eId
String firstName;

eId
String lastName;

VA

Case (a): The dependent entity uses IdClass:

22 Jakarta Persistence

2.4. Primary Keys and Entity Identity

@Entity
@IdClass(PersonId.class)
public class MedicalHistory {
@Id
@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="firstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")

}

@0neToOne
Person patient;

/] ...

Sample query:

SELECT m
FROM MedicalHistory m
WHERE m.patient.firstName = 'Charles’

Case (b): The dependent entity uses the EmbeddedId and MapsId annotations. The Personld class needs
to be annotated Embeddable or denoted as an embeddable class in the XML descriptor.

@Entity

public class MedicalHistory {
// all attributes map to relationship:
AttributeOverride not allowed

@EmbeddedId
PersonId id;

/] ...
@MapsId
@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="f1irstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")
3]

@0neToOne Person patient;

/] ...

Jakarta Persistence 23

2.4. Primary Keys and Entity Identity

Sample query:

SELECT m
FROM MedicalHistory m
WHERE m.patient.firstName = 'Charles'

Note that the following alternative query will yield the same result:

SELECT m
FROM MedicalHistory m
WHERE m.id.firstName = 'Charles'

Example 6:

The parent entity uses EmbeddedId. The dependent’s primary key is of the same type as that of the
parent.

public class Personld {
String firstName;
String lastName;

public class Person {
Personld id;

/] ...

Case (a): The dependent class uses IdClass:

24 Jakarta Persistence

2.5. Embeddable Classes

(PersonId.class)
public class MedicalHistory {

(

(name="FK1", referencedColumnName="firstName"),
(name="FK2", referencedColumnName="1astName")

1))

Person patient;

/] ...

Case (b): The dependent class uses EmbeddedId:

public class MedicalHistory {
// A1l attributes are mapped by the relationship
// AttributeOverride is not allowed
Personld id;

/] ...

(

(name="FK1", referencedColumnName="firstName"),
(name="FK2", referencedColumnName="1astName")

1))

Person patient;

/] ...

2.5. Embeddable Classes

An entity may use other fine-grained classes to represent entity state. Instances of these classes, unlike
entity instances, do not have persistent identity of their own. Instead, they exist only as part of the
state of the entity to which they belong. An entity may have collections of embeddables as well as
single-valued embeddable attributes. Embeddables may also be used as map keys and map values.
Embedded objects belong strictly to their owning entity, and are not sharable across persistent entities.
Attempting to share an embedded object across entities has undefined semantics.

Jakarta Persistence 25

2.6. Collections of Embeddable Classes and Basic Types

Embeddable classes must adhere to the requirements specified in Section 2.1 for entities with the
exception that embeddable classes are not annotated as Entity. Embeddable classes must be annotated
as Embeddable or denoted in the XML descriptor as such. The access type for an embedded object is
determined as described in Section 2.3.

An embeddable class may be used to represent the state of another embeddable class.

An embeddable class (including an embeddable class within another embeddable class) may contain a
collection of a basic type or other embeddable class."”

An embeddable class may contain a relationship to an entity or collection of entities. Since instances of
embeddable classes themselves have no persistent identity, the relationship from the referenced entity
is to the entity that contains the embeddable instance(s) and not to the embeddable itself"” An
embeddable class that is used as an embedded id or as a map key must not contain such a relationship.

Additional requirements and restrictions on embeddable classes are described in Section 2.6.

2.6. Collections of Embeddable Classes and Basic Types

A persistent field or property of an entity or embeddable class may correspond to a collection of a
basic type or embeddable class (“element collection”). Such a collection, when specified as such by the
ElementCollection annotation, is mapped by means of a collection table, as defined in Section 11.1.8. If
the ElementCollection annotation (or XML equivalent) is not specified for the collection-valued field or
property, the rules of Section 2.8 apply.

An embeddable class (including an embeddable class within another embeddable class) that is
contained within an element collection must not contain an element collection, nor may it contain a
relationship to an entity other than a many-to-one or one-to-one relationship. The embeddable class
must be on the owning side of such a relationship and the relationship must be mapped by a foreign
key mapping. (See Section 2.9)

2.7. Map Collections
Collections of elements and entity relationships can be represented as java.util. Map collections.

The map key and the map value independently can each be a basic type, an embeddable class, or an
entity.

The ElementCollection, OneToMany, and ManyToMany annotations are used to specify the map as an
element collection or entity relationship as follows: when the map value is a basic type or embeddable
class, the ElementCollection annotation is used; when the map value is an entity, the OneToMany or
ManyToMany annotation is used.

Bidirectional relationships represented as java.util. Map collections support the use of the Map datatype
on one side of the relationship only.

26 Jakarta Persistence

2.7. Map Collections

2.7.1. Map Keys

If the map key type is a basic type, the MapKeyColumn annotation can be used to specify the column
mapping for the map key. If the MapKeyColumn annotation is not specified, the default values of the
MapKeyColumn annotation apply as described in Section 11.1.33.

If the map key type is an embeddable class, the mappings for the map key columns are defaulted
according to the default column mappings for the embeddable class. (See Section 11.1.9). The
AttributeOverride and AttributeOverrides annotations can be used to override these mappings, as
described in Section 11.1.4 and Section 11.1.5. If an embeddable class is used as a map key, the
embeddable class must implement the hashCode and equals methods consistently with the database
columns to which the embeddable is mapped"®.

If the map key type is an entity, the MapKeyJoinColumn and MapKeyJoinColumns annotations are used
to specify the column mappings for the map key. If the primary key of the referenced entity is a simple
primary key and the MapKeyJoinColumn annotation is not specified, the default values of the
MapKeyJoinColumn annotation apply as described in Section 11.1.35.

If Java generic types are not used in the declaration of a relationship attribute of type java.util. Map, the
MapKeyClass annotation must be used to specify the type of the key of the map.

The MapKey annotation is used to specify the special case where the map key is itself the primary key
or a persistent field or property of the entity that is the value of the map. The MapKeyClass annotation
is not used when MapKey is specified.

2.7.2. Map Values

When the value type of the map is a basic type or an embeddable class, a collection table is used to
map the map. If Java generic types are not used, the targetClass element of the ElementCollection
annotation must be used to specify the value type for the map. The default column mappings for the
map value are derived according to the default mapping rules for the CollectionTable annotation
defined in Section 11.1.8. The Column annotation is used to override these defaults for a map value of
basic type. The AttributeOverride(s) and AssociationOverride(s) annotations are used to override the
mappings for a map value that is an embeddable class.

When the value type of the map is an entity, a join table is used to map the map for a many-to-many
relationship or, by default, for a one-to-many unidirectional relationship. If the relationship is a
bidirectional one-to-many/many-to-one relationship, by default the map is mapped in the table of the
entity that is the value of the map. If Java generic types are not used, the targetEntity element of the
OneToMany or ManyToMany annotation must be used to specify the value type for the map. Default
mappings are described in Section 2.10.

Jakarta Persistence 27

2.8. Mapping Defaults for Non-Relationship Fields or Properties

2.8. Mapping Defaults for Non-Relationship Fields or
Properties

If a persistent field or property other than a relationship property is not annotated with one of the
mapping annotations defined in Chapter 11 (or equivalent mapping information is not specified in the
XML descriptor), the following default mapping rules are applied in order:

« If the type is a class that is annotated with the Embeddable annotation, it is mapped in the same
way as if the field or property were annotated with the Embedded annotation. See Section 11.1.15
and Section 11.1.16.

« If the type of the field or property is one of the following, it is mapped in the same way as it would
if it were annotated as Basic: Java primitive types, wrappers of the primitive types, java.lang.String,
java.math.BigInteger, java.math.BigDecimal, java.utilDate, java.util.Calendar, java.sqlDate,
java.sql.Time, java.sql. Timestamp, java.time.LocalDate, java.time.LocalTime,
java.time.LocalDateTime, java.time.OffsetTime, java.time.OffsetDateTime, byte[], Byte[], charl],
Character[], enums, any other type that implements Serializable. See Section 11.1.6, Section 11.1.18,
Section 11.1.28, and Section 11.1.53.

It is an error if no annotation is present and none of the above rules apply.

2.9. Entity Relationships

Relationships among entities may be one-to-one, one-to-many, many-to-one, or many-to-many.
Relationships are polymorphic.

If there is an association between two entities, one of the following relationship modeling annotations
must be applied to the corresponding persistent property or field of the referencing entity: OneToOne,
OneToMany, ManyToOne, ManyToMany. For associations that do not specify the target type (e.g., where
Java generic types are not used for collections), it is necessary to specify the entity that is the target of
the relationship."” Equivalent XML elements may be used as an alternative to these mapping
annotations.

These annotations mirror common practice in relational database schema modeling. The use of the
relationship modeling annotations allows the object/relationship mapping of associations to the
relational database schema to be fully defaulted, to provide an ease-of-development facility. This is
described in Section 2.10.

Relationships may be bidirectional or unidirectional. A bidirectional relationship has both an owning
side and an inverse (non-owning) side. A unidirectional relationship has only an owning side. The
owning side of a relationship determines the updates to the relationship in the database, as described
in Section 3.2.4.

The following rules apply to bidirectional relationships:

The inverse side of a bidirectional relationship must refer to its owning side by use of the mappedBy

28 Jakarta Persistence

2.9. Entity Relationships

element of the OneToOne, OneToMany, or ManyToMany annotation. The mappedBy element designates
the property or field in the entity that is the owner of the relationship.

* The many side of one-to-many / many-to-one bidirectional relationships must be the owning side,
hence the mappedBy element cannot be specified on the ManyToOne annotation.

* For one-to-one bidirectional relationships, the owning side corresponds to the side that contains
the corresponding foreign key.

* For many-to-many bidirectional relationships either side may be the owning side.

The relationship modeling annotation constrains the use of the cascade=REMOVE specification. The
cascade=REMOVE specification should only be applied to associations that are specified as OneToOne
or OneToMany. Applications that apply cascade=REMOVE to other associations are not portable.

Associations that are specified as OneToOne or OneToMany support use of the orphanRemoval option.
The following behaviors apply when orphanRemoval is in effect:

 If an entity that is the target of the relationship is removed from the relationship (by setting the
relationship to null or removing the entity from the relationship collection), the remove operation
will be applied to the entity being orphaned. The remove operation is applied at the time of the
flush operation. The orphanRemoval functionality is intended for entities that are privately
“owned” by their parent entity. Portable applications must otherwise not depend upon a specific
order of removal, and must not reassign an entity that has been orphaned to another relationship
or otherwise attempt to persist it. If the entity being orphaned is a detached, new, or removed
entity, the semantics of orphanRemoval do not apply.

» If the remove operation is applied to a managed source entity, the remove operation will be
cascaded to the relationship target in accordance with the rules of Section 3.2.3, (and hence it is not
necessary to specify cascade=REMOVE for the relationship)™”.

Section 2.10, defines relationship mapping defaults for entity relationships. Additional mapping
annotations (e.g., column and table mapping annotations) may be specified to override or further
refine the default mappings and mapping strategies described in Section 2.10.

In addition, this specification also requires support for the following alternative mapping strategies:

* The mapping of unidirectional one-to-many relationships by means of foreign key mappings. The
JoinColumn annotation or corresponding XML element must be used to specify such non-default
mappings. See Section 11.1.25.

* The mapping of unidirectional and bidirectional one-to-one relationships, bidirectional many-to-
one/one-to-many relationships, and unidirectional many-to-one relationships by means of join
table mappings. The JoinTable annotation or corresponding XML element must be used to specify
such non-default mappings. See Section 11.1.27.

Such mapping annotations must be specified on the owning side of the relationship. Any overriding of
mapping defaults must be consistent with the relationship modeling annotation that is specified. For
example, if a many-to-one relationship mapping is specified, it is not permitted to specify a unique key

Jakarta Persistence 29

2.10. Relationship Mapping Defaults

constraint on the foreign key for the relationship.

The persistence provider handles the object/relational mapping of the relationships, including their
loading and storing to the database as specified in the metadata of the entity class, and the referential
integrity of the relationships as specified in the database (e.g., by foreign key constraints).

Note that it is the application that bears responsibility for maintaining the consistency

o of runtime relationships—for example, for insuring that the “one” and the “many”
sides of a bidirectional relationship are consistent with one another when the
application updates the relationship at runtime.

If there are no associated entities for a multi-valued relationship of an entity fetched from the
database, the persistence provider is responsible for returning an empty collection as the value of the
relationship.

2.10. Relationship Mapping Defaults

This section defines the mapping defaults that apply to the use of the OneToOne, OneToMany,
ManyToOne, and ManyToMany relationship modeling annotations. The same mapping defaults apply
when the XML descriptor is used to denote the relationship cardinalities.

2.10.1. Bidirectional OneToOne Relationships
Assuming that:

* Entity A references a single instance of Entity B.
* Entity B references a single instance of Entity A.

* Entity A is specified as the owner of the relationship.
The following mapping defaults apply:

« Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

* Table A contains a foreign key to table B. The foreign key column name is formed as the
concatenation of the following: the name of the relationship property or field of entity A; " _ "; the
name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B and there is a unique key constraint on it.

Example:

30 Jakarta Persistence

2.10. Relationship Mapping Defaults

public class Employee {
private Cubicle assignedCubicle;

public Cubicle getAssignedCubicle() {
return assignedCubicle;

}

public void setAssignedCubicle(Cubicle cubicle) {
this.assignedCubicle = cubicle;

}

/] ...

public class Cubicle {
private Employee residentEmployee;

(mappedBy="assignedCubicle")
public Employee getResidentEmployee() {
return residentEmployee;

}

public void setResidentEmployee(Employee employee) {
this.residentEmployee = employee;

}

/] ...

In this example:

» Entity Employee references a single instance of Entity Cubicle.
 Entity Cubicle references a single instance of Entity Employee.

» Entity Employee is the owner of the relationship.
The following mapping defaults apply:

» Entity Employee is mapped to a table named EMPLOYEE.
 Entity Cubicle is mapped to a table named CUBICLE.

» Table EMPLOYEE contains a foreign key to table CUBICLE. The foreign key column is named
ASSIGNEDCUBICLE_ <PK of CUBICLE>, where <PK of CUBICLE> denotes the name of the primary

Jakarta Persistence 31

2.10. Relationship Mapping Defaults

key column of table CUBICLE. The foreign key column has the same type as the primary key of
CUBICLE, and there is a unique key constraint on it.

2.10.2. Bidirectional ManyToOne / OneToMany Relationships
Assuming that:

* Entity A references a single instance of Entity B.
« Entity B references a collection of Entity A",

* Entity A must be the owner of the relationship.
The following mapping defaults apply:

» Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

» Table A contains a foreign key to table B. The foreign key column name is formed as the
concatenation of the following: the name of the relationship property or field of entity A; " _ "; the
name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B.

Example:

32 Jakarta Persistence

2.10. Relationship Mapping Defaults

public class Employee {
private Department department;

public Department getDepartment() {
return department;

}

public void setDepartment(Department department) {
this.department = department;

}

/] ...

public class Department {
private Collection<Employee> employees = new HashSet();

(mappedBy="department")
public Collection<Employee> getEmployees() {
return employees;

}

public void setEmployees(Collection<Employee> employees) {
this.employees = employees;

}

/] ...

In this example:

» Entity Employee references a single instance of Entity Department.
» Entity Department references a collection of Entity Employee.

» Entity Employee is the owner of the relationship.
The following mapping defaults apply:

» Entity Employee is mapped to a table named EMPLOYEE.
* Entity Department is mapped to a table named DEPARTMENT.

» Table EMPLOYEE contains a foreign key to table DEPARTMENT. The foreign key column is named
DEPARTMENT_ <PK of DEPARTMENT>, where <PK of DEPARTMENT> denotes the name of the

Jakarta Persistence 33

2.10. Relationship Mapping Defaults

primary key column of table DEPARTMENT. The foreign key column has the same type as the
primary key of DEPARTMENT.

2.10.3. Unidirectional Single-Valued Relationships
Assuming that:

* Entity A references a single instance of Entity B.

* Entity B does not reference Entity A.
A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional single-valued relationship modeling case can be specified as either a unidirectional
OneToOne or as a unidirectional ManyToOne relationship.

2.10.3.1. Unidirectional OneToOne Relationships

The following mapping defaults apply:

» Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

» Table A contains a foreign key to table B. The foreign key column name is formed as the
concatenation of the following: the name of the relationship property or field of entity A; " _ "; the
name of the primary key column in table B. The foreign key column has the same type as the
primary key of table B and there is a unique key constraint on it.

Example:

34 Jakarta Persistence

2.10. Relationship Mapping Defaults

public class Employee {
private TravelProfile profile;

public TravelProfile getProfile() {
return profile;

}

public void setProfile(TravelProfile profile) {
this.profile = profile;
}

/] ...

public class TravelProfile {
/] ...
}

In this example:

* Entity Employee references a single instance of Entity TravelProfile.
* Entity TravelProfile does not reference Entity Employee.

* Entity Employee is the owner of the relationship.
The following mapping defaults apply:

» Entity Employee is mapped to a table named EMPLOYEE.
» Entity TravelProfile is mapped to a table named TRAVELPROFILE.

» Table EMPLOYEE contains a foreign key to table TRAVELPROFILE. The foreign key column is
named PROFILE <PK of TRAVELPROFILE>, where <PK of TRAVELPROFILE> denotes the name of
the primary key column of table TRAVELPROFILE. The foreign key column has the same type as the
primary key of TRAVELPROFILE, and there is a unique key constraint on it.

2.10.3.2. Unidirectional ManyToOne Relationships
The following mapping defaults apply:
» Entity A is mapped to a table named A.

« Entity B is mapped to a table named B.

» Table A contains a foreign key to table B. The foreign key column name is formed as the
concatenation of the following: the name of the relationship property or field of entity A; ""; the

Jakarta Persistence 35

2.10. Relationship Mapping Defaults

name of the primary key column in table _B. The foreign key column has the same type as the
primary key of table B.

Example:

public class Employee {
private Address address;

public Address getAddress() {
return address;

}

public void setAddress(Address address) {
this.address = address;

}

/] ...

public class Address {
/] ...

}

In this example:

» Entity Employee references a single instance of Entity Address.
» Entity Address does not reference Entity Employee.

* Entity Employee is the owner of the relationship.
The following mapping defaults apply:

» Entity Employee is mapped to a table named EMPLOYEE.
» Entity Address is mapped to a table named ADDRESS.

» Table EMPLOYEE contains a foreign key to table ADDRESS. The foreign key column is named
ADDRESS_ <PK of ADDRESS>, where <PK of ADDRESS> denotes the name of the primary key
column of table ADDRESS. The foreign key column has the same type as the primary key of
ADDRESS.

2.10.4. Bidirectional ManyToMany Relationships

Assuming that:

36 Jakarta Persistence

2.10. Relationship Mapping Defaults

* Entity A references a collection of Entity B.
* Entity B references a collection of Entity A.

* Entity A is the owner of the relationship.
The following mapping defaults apply:

* Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

* There is a join table that is named A_B (owner name first). This join table has two foreign key
columns. One foreign key column refers to table A and has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following: the
name of the relationship property or field of entity B; " _ "; the name of the primary key column in
table A. The other foreign key column refers to table B and has the same type as the primary key of
table B. The name of this foreign key column is formed as the concatenation of the following: the name
of the relationship property or field of entity A; " _"; the name of the primary key column in table B.

Example:

Jakarta Persistence 37

2.10. Relationship Mapping Defaults

public class Project {
private Collection<Employee> employees;

public Collection<Employee> getEmployees() {
return employees;

}

public void setEmployees(Collection<Employee> employees) {
this.employees = employees;

}

/] ...

public class Employee {
private Collection<Project> projects;

(mappedBy="employees")
public Collection<Project> getProjects() {
return projects;

}

public void setProjects(Collection<Project> projects) {
this.projects = projects;

}

/] ...

In this example:

 Entity Project references a collection of Entity Employee.
» Entity Employee references a collection of Entity Project.

* Entity Project is the owner of the relationship.
The following mapping defaults apply:

* Entity Project is mapped to a table named PROJECT.
» Entity Employee is mapped to a table named EMPLOYEE.

* There is a join table that is named PROJECT_EMPLOYEE (owner name first). This join table has two
foreign key columns. One foreign key column refers to table PROJECT and has the same type as the

38 Jakarta Persistence

2.10. Relationship Mapping Defaults

primary key of PROJECT. The name of this foreign key column is PROJECTS <PK of PROJECT>, where
<PK of PROJECT> denotes the name of the primary key column of table _PROJECT. The other foreign
key column refers to table EMPLOYEE and has the same type as the primary key of EMPLOYEE. The
name of this foreign key column is EMPLOYEES <PK of EMPLOYEE>, where <PK of EMPLOYEE>
denotes the name of the primary key column of table _EMPLOYEE.

2.10.5. Unidirectional Multi-Valued Relationships

Assuming that:

* Entity A references a collection of Entity B.

 Entity B does not reference Entity A.
A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional multi-valued relationship modeling case can be specified as either a unidirectional
OneToMany or as a unidirectional ManyToMany relationship.

2.10.5.1. Unidirectional OneToMany Relationships

The following mapping defaults apply:

* Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

* There is a join table that is named A_B (owner name first). This join table has two foreign key
columns. One foreign key column refers to table A and has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following: the
name of entity A; " _ "; the name of the primary key column in table A. The other foreign key column
refers to table B and has the same type as the primary key of table B and there is a unique key
constraint on it. The name of this foreign key column is formed as the concatenation of the following:
the name of the relationship property or field of entity A; " _"; the name of the primary key column
in table B.

Example:

Jakarta Persistence 39

2.10. Relationship Mapping Defaults

public class Employee {
private Collection<AnnualReview> annualReviews;

public Collection<AnnualReview> getAnnualReviews() {
return annualReviews;

}

public void setAnnualReviews(Collection<AnnualReview> annualReviews) {
this.annualReviews = annualReviews;

}

/] ...

public class AnnualReview {
/] ...
}

In this example:

* Entity Employee references a collection of Entity AnnualReview.
» Entity AnnualReview does not reference Entity Employee.

* Entity Employee is the owner of the relationship.
The following mapping defaults apply:

» Entity Employee is mapped to a table named EMPLOYEE.
* Entity AnnualReview is mapped to a table named ANNUALREVIEW.

* There is a join table that is named EMPLOYEE ANNUALREVIEW (owner name first). This join table
has two foreign key columns. One foreign key column refers to table EMPLOYEE and has the same
type as the primary key of EMPLOYEE. This foreign key column is named EMPLOYEE <PK of
EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the primary key column of table
_EMPLOYEE. The other foreign key column refers to table ANNUALREVIEW and has the same type as
the primary key of ANNUALREVIEW. This foreign key column is named ANNUALREVIEWS <PK of
ANNUALREVIEW>, where <PK of ANNUALREVIEW> denotes the name of the primary key column of
table _ANNUALREVIEW. There is a unique key constraint on the foreign key that refers to table
ANNUALREVIEW.

2.10.5.2. Unidirectional ManyToMany Relationships

The following mapping defaults apply:

40 Jakarta Persistence

2.10. Relationship Mapping Defaults

* Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

* There is a join table that is named A_B (owner name first). This join table has two foreign key
columns. One foreign key column refers to table A and has the same type as the primary key of
table A. The name of this foreign key column is formed as the concatenation of the following: the
name of entity A; " _ "; the name of the primary key column in table A. The other foreign key column
refers to table B and has the same type as the primary key of table B. The name of this foreign key
column is formed as the concatenation of the following: the name of the relationship property or field
of entity A; " _"; the name of the primary key column in table B.

Example:

public class Employee {
private Collection<Patent> patents;

public Collection<Patent> getPatents() {
return patents;

}

public void setPatents(Collection<Patent> patents) {
this.patents = patents;

}

/] ...

public class Patent {
//...
}

In this example:

» Entity Employee references a collection of Entity Patent.
» Entity Patent does not reference Entity Employee.

» Entity Employee is the owner of the relationship.
The following mapping defaults apply:

» Entity Employee is mapped to a table named EMPLOYEE.
* Entity Patent is mapped to a table named PATENT.

Jakarta Persistence 41

2.11. Inheritance

* There is a join table that is named EMPLOYEE_PATENT (owner name first). This join table has two
foreign key columns. One foreign key column refers to table EMPLOYEE and has the same type as
the primary key of EMPLOYEE. This foreign key column is named EMPLOYEE <PK of EMPLOYEE>,
where <PK of EMPLOYEE> denotes the name of the primary key column of table _[EMPLOYEE. The
other foreign key column refers to table PATENT and has the same type as the primary key of PATENT.
This foreign key column is named PATENTS <PK of PATENT>, where <PK of PATENT> denotes the
name of the primary key column of table _PATENT.

2.11. Inheritance

An entity may inherit from another entity class. Entities support inheritance, polymorphic
associations, and polymorphic queries.

Both abstract and concrete classes can be entities. Both abstract and concrete classes can be annotated
with the Entity annotation, mapped as entities, and queried for as entities.

Entities can extend non-entity classes and non-entity classes can extend entity classes.

These concepts are described further in the following sections.

2.11.1. Abstract Entity Classes

An abstract class can be specified as an entity. An abstract entity differs from a concrete entity only in
that it cannot be directly instantiated. An abstract entity is mapped as an entity and can be the target of
queries (which will operate over and/or retrieve instances of its concrete subclasses).

An abstract entity class is annotated with the Entity annotation or denoted in the XML descriptor as an
entity.

The following example shows the use of an abstract entity class in the entity inheritance hierarchy.

Example: Abstract class as an Entity

42 Jakarta Persistence

2.11. Inheritance

@Entity
@Table(name="EMP")
@Inheritance(strategy=JOINED)
public abstract class Employee {
@Id
protected Integer empId;

@Version
protected Integer version;

@ManyToOne
protected Address address;

/] ...
}

@Entity

@Table(name="FT_EMP")

@DiscriminatorValue("FT")

@PrimaryKeyJoinColumn(name="FT_EMPID")

public class FullTimeEmployee extends Employee {
// Inherit empId, but mapped in this class to FT_EMP.FT_EMPID
// Inherit version mapped to EMP.VERSION
// Inherit address mapped to EMP.ADDRESS fk

// Defaults to FT_EMP.SALARY
protected Integer salary;

/] ...
}

@Entity
@Table(name="PT_EMP")
@DiscriminatorValue("PT")
// PK column is PT_EMP.EMPID due to _PrimaryKeyJoinColumn_ default
public class PartTimeEmployee extends Employee {
protected Float hourlyWage;

/] ...

2.11.2. Mapped Superclasses

An entity may inherit from a superclass that provides persistent entity state and mapping information,
but which is not itself an entity. Typically, the purpose of such a mapped superclass is to define state
and mapping information that is common to multiple entity classes.

Jakarta Persistence 43

2.11. Inheritance

A mapped superclass, unlike an entity, is not queryable and must not be passed as an argument to
EntityManager or Query operations. Persistent relationships defined by a mapped superclass must be
unidirectional.

Both abstract and concrete classes may be specified as mapped superclasses. The MappedSuperclass
annotation (or mapped-superclass XML descriptor element) is used to designate a mapped superclass.

A class designated as a mapped superclass has no separate table defined for it. Its mapping
information is applied to the entities that inherit from it.

A class designated as a mapped superclass can be mapped in the same way as an entity except that the
mappings will apply only to its subclasses since no table exists for the mapped superclass itself. When
applied to the subclasses, the inherited mappings will apply in the context of the subclass tables.
Mapping information can be overridden in such subclasses by using the AttributeOverride and
AssociationOverride annotations or corresponding XML elements.

All other entity mapping defaults apply equally to a class designated as a mapped superclass.
The following example illustrates the definition of a concrete class as a mapped superclass.

Example: Concrete class as a mapped superclass

public class Employee {

protected Integer empId;
protected Integer version;
(name="ADDR")
protected Address address;
public Integer getEmpId() { ... }
public void setEmpId(Integer id) { ... }

public Address getAddress() { ... }

public void setAddress(Address addr) { ... }
+

// Default table is FTEMPLOYEE table

public class FTEmployee extends Employee {
// Inherited empId field mapped to FTEMPLOYEE.EMPID

44 Jakarta Persistence

2.11. Inheritance

// Inherited version field mapped to FTEMPLOYEE.VERSION
// Inherited address field mapped to FTEMPLOYEE.ADDR fk

// Defaults to FTEMPLOYEE.SALARY
protected Integer salary;

public FTEmployee() {}
public Integer getSalary() { ... }

public void setSalary(Integer salary) { ... }
}

@Entity
@Table(name="PT_EMP")
@AssociationOverride(name="address", joincolumns=@JoinColumn(name="ADDR_ID"))
public class PartTimeEmployee extends Employee {
// Inherited empId field mapped to PT_EMP.EMPID
// Inherited version field mapped to PT_EMP.VERSION
// address field mapping overridden to PT_EMP.ADDR_ID fk
@Column(name="WAGE")
protected Float hourlyWage;

public PartTimeEmployee() {}
public Float getHourlyWage() { ... }

public void setHourlyWage(Float wage) { ... }

2.11.3. Non-Entity Classes in the Entity Inheritance Hierarchy

An entity can have a non-entity superclass, which may be either a concrete or abstract class.””

The non-entity superclass serves for inheritance of behavior only. The state of a non-entity superclass
is not persistent. Any state inherited from non-entity superclasses is non-persistent in an inheriting
entity class. This non-persistent state is not managed by the entity manager””. Any annotations on
such superclasses are ignored.

Non-entity classes cannot be passed as arguments to methods of the EntityManager or Query interfaces
I and cannot bear mapping information.

The following example illustrates the use of a non-entity class as a superclass of an entity.

Example: Non-entity superclass

Jakarta Persistence 45

2.12. Inheritance Mapping Strategies

public class Cart {
protected Integer operationCount; // transient state

public Cart() {
operationCount = 0;

}

public Integer getOperationCount() {
return operationCount;

}

public void incrementOperationCount() {
operationCount++;

}

public class ShoppingCart extends Cart {
Collection<Item> items = new Vector<Item>();

public ShoppingCart() {
super();

}

/] ...

public Collection<Item> getItems() {
return items;

}

public void addItem(Item item) {
items.add(item);
incrementOperationCount();

2.12. Inheritance Mapping Strategies

The mapping of class hierarchies is specified through metadata.

There are three basic strategies that are used when mapping a class or class hierarchy to a relational
database:

* asingle table per class hierarchy

46 Jakarta Persistence

2.12. Inheritance Mapping Strategies

* a joined subclass strategy, in which fields that are specific to a subclass are mapped to a separate
table than the fields that are common to the parent class, and a join is performed to instantiate the
subclass.

* atable per concrete entity class

An implementation is required to support the single table per class hierarchy inheritance mapping
strategy and the joined subclass strategy.

Support for the table per concrete class inheritance mapping strategy is optional in
o this release. Applications that use this mapping strategy will not be portable.

Support for the combination of inheritance strategies within a single entity
inheritance hierarchy is not required by this specification.
2.12.1. Single Table per Class Hierarchy Strategy

In this strategy, all the classes in a hierarchy are mapped to a single table. The table has a column that
serves as a “discriminator column”, that is, a column whose value identifies the specific subclass to
which the instance that is represented by the row belongs.

This mapping strategy provides good support for polymorphic relationships between entities and for
queries that range over the class hierarchy.

It has the drawback, however, that it requires that the columns that correspond to state specific to the
subclasses be nullable.

2.12.2. Joined Subclass Strategy

In the joined subclass strategy, the root of the class hierarchy is represented by a single table. Each
subclass is represented by a separate table that contains those fields that are specific to the subclass
(not inherited from its superclass), as well as the column(s) that represent its primary key. The primary
key column(s) of the subclass table serves as a foreign key to the primary key of the superclass table.

This strategy provides support for polymorphic relationships between entities.

It has the drawback that it requires that one or more join operations be performed to instantiate
instances of a subclass. In deep class hierarchies, this may lead to unacceptable performance. Queries
that range over the class hierarchy likewise require joins.

2.12.3. Table per Concrete Class Strategy

In this mapping strategy, each class is mapped to a separate table. All properties of the class, including
inherited properties, are mapped to columns of the table for the class.

This strategy has the following drawbacks:

Jakarta Persistence 47

2.13. Naming of Database Objects

* It provides poor support for polymorphic relationships.

* It typically requires that SQL UNION queries (or a separate SQL query per subclass) be issued for
queries that are intended to range over the class hierarchy:.

2.13. Naming of Database Objects

Many annotations and annotation elements contain names of database objects or assume default
names for database objects.

This specification requires the following with regard to the interpretation of the names referencing
database objects. These names include the names of tables, columns, and other database elements.
Such names also include names that result from defaulting (e.g., a table name that is defaulted from an
entity name or a column name that is defaulted from a field or property name).

By default, the names of database objects must be treated as undelimited identifiers and passed to the
database as such.

For example, assuming the use of an English locale, the following must be passed to the database as
undelimited identifers so that they will be treated as equivalent for all databases that comply with the
SQL Standard’s requirements for the treatment of “regular identifiers” (undelimited identifiers) and
“delimited identifiers” [2]:

(name="Customer")
(name="customer")
(name="cUsTomer")

Similarly, the following must be treated as equivalent:

(name="CUSTOMER")
Customer customer;

(name="customer")
Customer customer;

Customer customer;

To specify delimited identifiers, one of the following approaches must be used:

* It is possible to specify that all database identifiers in use for a persistence unit be treated as
delimited identifiers by specifying the <delimited-identifiers/> element within the persistence-unit-
defaults element of the object/relational xml mapping file. If the <delimited-identifiers/> element is
specified, it cannot be overridden.

« It is possible to specify on a per-name basis that a name for a database object is to be interpreted as

48 Jakarta Persistence

2.13. Naming of Database Objects

a delimited identifier as follows:

- Using annotations, a name is specified as a delimited identifier by enclosing the name within
double quotes, whereby the inner quotes are escaped, e.g., @Table(name="\"customer\"").

- When using XML, a name is specified as a delimited identifier by use of double quotes, e.g.,
<table name=""customer""/> %

The following annotations contain elements whose values correspond to names of database identifiers
and for which the above rules apply, including when their use is nested within that of other
annotations:

EntityResult(discriminatorColumn element)

FieldResult(column element)

ColumnResult(name element)

CollectionTable(name, catalog, schema elements)

Column(name, columnDefinition, table elements)

DiscriminatorColumn(name, columnDefinition elements)

ForeignKey(name, foreignKeyDefinition elements)

Index(name, columnList elements)

JoinColumn(name, referencedColumnName, columnDefinition, table elements)
JoinTable(name, catalog, schema elements)

MapKeyColumn(name, columnDefinition, table elements)

MapKeyJoinColumn(name, referencedColumnName, columnDefinition, table elements)
NamedStoredProcedureQuery(procedureName element)

OrderColumn(name, columnDefinition elements)

PrimaryKeyJoinColumn(name, referencedColumnName, columnDefinition elements)
SecondaryTable(name, catalog, schema elements)
SequenceGenerator(sequenceName, catalog, schema elements)
StoredProcedureParameter(name element)

Table(name, catalog, schema elements)

TableGenerator(table, catalog, schema, pkColumnName, valueColumnName elements)

UniqueConstraint(name, columnNames elements)

The following XML elements and types contain elements or attributes whose values correspond to
names of database identifiers and for which the above rules apply:

entity-mappings(schema, catalog elements)

persistence-unit-defaults(schema, catalog elements)

Jakarta Persistence 49

2.13. Naming of Database Objects

collection-table(name, catalog, schema attributes)

e column(name, table, column-definition attributes)

* column-result(name attribute)

o discriminator-column(name, column-definition attributes)

* entity-result(discriminator-column attribute)

* field-result(column attribute)

* foreign-key(name, foreign-key-definition attributes)

* index(name attribute, column-list element)

* join-column(name, referenced-column-name, column-definition, table attributes)

* join-table(name, catalog, schema attributes)

* map-key-column(name, column-definition, table attributes)

* map-key-join-column(name, referenced-column-name, column-definition, table attributes)
* named-stored-procedure-query(procedure-name attribute)

e order-column(name, column-definition attributes)

* primary-key-join-column(name, referenced-column-name, column-definition attributes)
» secondary-table(name, catalog, schema attributes)

* sequence-generator(sequence-name, catalog, schema attributes)

* stored-procedure-parameter(name attribute)

* table(name, catalog, schema attributes)

* table-generator(table, catalog, schema, pk-column-name, value-column-name attributes)

* unique-constraint(name attribute, column-name element)

[1] The term "persistence provider runtime" refers to the runtime environment of the persistence implementation. In
Jakarta EE environments, this may be the Jakarta EE container or a third-party persistence provider implementation
integrated with it.

[2] Specifically, if get X is the name of the getter method and set X is the name of the setter method, where X is a string,
the name of the persistent property is defined by the result of java.beans.Introspector.decapitalize(X).

[3] Portable applications should not expect the order of a list to be maintained across persistence contexts unless the
OrderColumn construct is used or unless the OrderBy construct is used and the modifications to the list observe the
specified ordering.

[4] Lazy fetching is a hint to the persistence provider and can be specified by means of the Basic, OneToOne, OneToMany,
ManyToOne, ManyToMany, and ElementCollection annotations and their XML equivalents. See Chapter 11.

[5] Note that an instance of Calendar must be fully initialized for the type that it is mapped to.

[6] The use of XML as an alternative and the interaction between Java language annotations and XML elements in
defining default and explicit access types is described in Chapter 12.

[7] These annotations must not be applied to the setter methods.

[8] It is permitted (but redundant) to place Access(FIELD) on a persistent field whose class has field access type or
Access(PROPERTY) on a persistent property whose class has property access type. It is not permitted to specify a field as
Access(PROPERTY) or a property as Access(FIELD). Note that Access(PROPERTY) must not be placed on the setter
methods.

50 Jakarta Persistence

2.13. Naming of Database Objects

[9] In general, however, approximate numeric types (e.g., floating point types) should never be used in primary keys.
[10] This includes not changing the value of a mutable type that is primary key or an attribute of a composite primary
key.

[11] The implementation may, but is not required to, throw an exception. Portable applications must not rely on any
such specific behavior.

[12] If the application does not set the primary key attribute corresponding to the relationship, the value of that
attribute may not be available until after the entity has been flushed to the database.

[13] Note that it is correct to observe the first rule as an alternative in this case.

[14] Note that the parent’s primary key might be represented as either an embedded id or as an id class.

[15] Note that the use of PrimaryKeyJoinColumn instead of MapsId would result in the same mapping in this example.
Use of Mapsld is preferred for the mapping of derived identities.

[16] Direct or indirect circular containment dependencies among embeddable classes are not permitted.

[17] An entity cannot have a unidirectional relationship to the embeddable class of another entity (or itself).

[18] Note that when an embeddable instance is used as a map key, these attributes represent its identity. Changes to
embeddable instances used as map keys have undefined behaviour and should be avoided.

[19] For associations of type java.util. Map, target type refers to the type that is the Map value.

[20] If the parent is detached or new or was previously removed before the orphan was associated with it, the remove
operation is not applied to the entity being orphaned.

[21] When the relationship is modeled as a java.util. Map, “Entity B references a collection of Entity A” means that Entity
B references a map collection in which the type of the Map value is Entity A. The map key may be a basic type,
embeddable class, or an entity.

[22] The superclass must not be an embeddable class or id class.

[23] If a transaction-scoped persistence context is used, it is not required to be retained across transactions.

[24] This includes instances of a non-entity class that extends an entity class.

[25] If <delimited-identifiers> is specified and individual annotations or XML elements or attributes use escaped double
quotes, the double-quotes appear in the name of the database identifier.

Jakarta Persistence 51

3.1. EntityManager

Chapter 3. Entity Operations

This chapter describes the use of the EntityManager API to manage the entity instance lifecycle and the
use of the Query API to retrieve and query entities and their persistent state.

3.1. EntityManager

An EntityManager instance is associated with a persistence context. A persistence context is a set of
entity instances in which for any persistent entity identity there is a unique entity instance. Within the
persistence context, the entity instances and their lifecycle are managed. The EntityManager interface
defines the methods that are used to interact with the persistence context. The EntityManager API is
used to create and remove persistent entity instances, to find persistent entities by primary key, and to
query over persistent entities.

The set of entities that can be managed by a given EntityManager instance is defined by a persistence
unit. A persistence unit defines the set of all classes that are related or grouped by the application, and
which must be colocated in their mapping to a single database.

Section 3.1 defines the EntityManager interface. The entity instance lifecycle is described in Section 3.2.
The relationships between entity managers and persistence contexts are described in Section 3.3 and
in further detail in Chapter 7. Section 3.4 describes mechanisms for concurrency control and locking.
Section 3.5 describes entity listeners and lifecycle callback methods for entities. Section 3.6 describes
support for automatic use of Bean Validation. Section 3.7 describes the use of entity graphs to control
the path and boundaries of find and query operations. Section 3.7 describes mechanisms for defining
conversions between entity and database representations for attributes of basic types. Section 3.9
describes mechanisms for portable second-level cache configuration. The Query, TypedQuery,
StoredProcedureQuery, and related interfaces are described in Section 3.10. Section 3.11 provides a
summary of exceptions. The Jakarta Persistence query language is defined in Chapter 4 and the APIs
for the construction of Criteria queries in Chapter 6. The definition of persistence units is described in
Chapter 8.

3.1.1. EntityManager Interface

package jakarta.persistence;

import java.util.Map;

import java.util.list;

import jakarta.persistence.metamodel.Metamodel;
import jakarta.persistence.criteria.CriteriaBuilder;
import jakarta.persistence.criteria.CriteriaQuery;
import jakarta.persistence.criteria.Criterialpdate;
import jakarta.persistence.criteria.CriteriaDelete;

/**

52 Jakarta Persistence

Interface used to interact with the persistence context.

<p> An <code>EntityManager</code> instance is associated with

a persistence context. A persistence context is a set of entity
instances in which for any persistent entity identity there is

a unique entity instance. Within the persistence context, the
entity instances and their lifecycle are managed.

The <code>EntityManager</code> API is used

to create and remove persistent entity instances, to find entities
by their primary key, and to query over entities.

<p> The set of entities that can be managed by a given
<code>EntityManager</code> instance is defined by a persistence
unit. A persistence unit defines the set of all classes that are
related or grouped by the application, and which must be
colocated in their mapping to a single database.

@see Query

@see TypedQuery

@see CriteriaQuery

@see PersistenceContext
@see StoredProcedureQuery

EE R R R B R R R R N T N R N N N I T I

@since 1.0
*/
public interface EntityManager {

Make an instance managed and persistent.
@param entity entity instance
@throws EntityExistsException if the entity already exists.

be thrown when the persist operation is invoked, or the

3.1. EntityManager

*
*
*
* (If the entity already exists, the <code>EntityExistsException</code> may
*
*

<code>EntityExistsException</code> or another <code>PersistenceException</code>

may be
* thrown at flush or commit time.)
* @throws IllegalArgumentException if the instance is not an
* entity
* @throws TransactionRequiredException if there is no transaction when
* invoked on a container-managed entity manager of that is of type
*

<code>PersistenceContextType.TRANSACTION</code>

public void persist(Object entity);

/**

* Merge the state of the given entity into the
* current persistence context.
* @param entity entity instance

Jakarta Persistence 53

3.1. EntityManager

* @return the managed instance that the state was merged to

* @throws IllegalArgumentException if instance is not an

* entity or is a removed entity

* @throws TransactionRequiredException if there is no transaction when

* invoked on a container-managed entity manager of that is of type
* <code>PersistenceContextType.TRANSACTION</code>

*/

public <T> T merge(T entity);

/**

* Remove the entity instance.

* @param entity entity instance

* @throws IllegalArgumentException if the instance is not an

* entity or is a detached entity

* @throws TransactionRequiredException if invoked on a

* container-managed entity manager of type

* <code>PersistenceContextType.TRANSACTION</code> and there is
* no transaction

*/

public void remove(Object entity);

/**

* Find by primary key.

* Search for an entity of the specified class and primary key.
* If the entity instance is contained in the persistence context,
* it is returned from there.

* @param entityClass entity class

* @param primaryKey primary key

* @return the found entity instance or null if the entity does
* not exist

* @throws IllegalArgumentException if the first arqument does
* not denote an entity type or the second argument is
* is not a valid type for that entity's primary key or
*

is null
*/
public <T> T find(Class<T> entityClass, Object primaryKey);

/**

* Find by primary key, using the specified properties.

* Search for an entity of the specified class and primary key.
* If the entity instance is contained in the persistence

* context, it is returned from there.

* If a vendor-specific property or hint is not recognized,

* it is silently ignored.

* @param entityClass entity class

* @param primaryKey primary key

* @param properties standard and vendor-specific properties
*

and hints

54 Jakarta Persistence

3.1. EntityManager

* @return the found entity instance or null if the entity does
* not exist

* @throws IllegalArgumentException if the first argument does
* not denote an entity type or the second argument is
* is not a valid type for that entity's primary key or

k3 is null
* @since 2.0
*/

public <T> T find(Class<T> entityClass, Object primaryKey,
Map<String, Object> properties);

/**

Find by primary key and lock.
Search for an entity of the specified class and primary key
and lock it with respect to the specified lock type.
If the entity instance is contained in the persistence context,
it is returned from there, and the effect of this method is
the same as if the lock method had been called on the entity.
<p> If the entity is found within the persistence context and the
lock mode type is pessimistic and the entity has a version
attribute, the persistence provider must perform optimistic
version checks when obtaining the database lock. If these
checks fail, the <code>OptimisticLockException</code> will be thrown.
<p>If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:

<1i> the <code>PessimisticlLockException</code> will be thrown if the database
locking failure causes transaction-level rollback
 the <code>LockTimeoutException</code> will be thrown if the database
locking failure causes only statement-level rollback

@param entityClass entity class
@param primaryKey primary key
@param lockMode 1lock mode
@return the found entity instance or null if the entity does
not exist
@throws I1legalArgumentException if the first argument does
not denote an entity type or the second argument is
not a valid type for that entity's primary key or
is null
@throws TransactionRequiredException if there is no
transaction and a lock mode other than <code>NONE</code> is
specified or if invoked on an entity manager which has
not been joined to the current transaction and a lock
mode other than <code>NONE</code> is specified
@throws OptimisticLockException if the optimistic version
check fails
@throws PessimisticLockException if pessimistic locking

EEE R T R R N N I N R RN N S R TR SR N N SN N N SR R SR SN N N R R N SR NN R

Jakarta Persistence 55

3.1. EntityManager

fails and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back

@throws PersistenceException if an unsupported lock call
is made

@since 2.0

* 0% % * X X

*/
public <T> T find(Class<T> entityClass, Object primaryKey,
LockModeType lockMode);

/**

Find by primary key and lock, using the specified properties.
Search for an entity of the specified class and primary key
and lock it with respect to the specified lock type.
If the entity instance is contained in the persistence context,
it is returned from there.
<p> If the entity is found
within the persistence context and the lock mode type
is pessimistic and the entity has a version attribute, the
persistence provider must perform optimistic version checks
when obtaining the database lock. If these checks fail,
the <code>OptimisticLockException</code> will be thrown.
<p>If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:

 the <code>PessimisticLockException</code> will be thrown if the database
locking failure causes transaction-level rollback
 the <code>LockTimeoutException</code> will be thrown if the database
locking failure causes only statement-level rollback

<p>If a vendor-specific property or hint is not recognized,
it is silently ignored.
<p>Portable applications should not rely on the standard timeout
hint. Depending on the database in use and the locking
mechanisms used by the provider, the hint may or may not
be observed.
@param entityClass entity class
@param primaryKey primary key
@param lockMode 1lock mode
@param properties standard and vendor-specific properties

and hints
@return the found entity instance or null if the entity does

not exist
@throws IllegalArgumentException if the first arqument does

not denote an entity type or the second argument is

not a valid type for that entity's primary key or

is null
@throws TransactionRequiredException if there is no

EE I T T . T R I R R R R B R N T R R T R I N R N R B R T R T R

56 Jakarta Persistence

3.1. EntityManager

transaction and a lock mode other than <code>NONE</code> is
specified or if invoked on an entity manager which has
not been joined to the current transaction and a lock
mode other than <code>NONE</code> is specified

@throws OptimisticLockException if the optimistic version
check fails

@throws PessimisticLockException if pessimistic locking
fails and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back

@throws PersistenceException if an unsupported lock call
is made

@since 2.0

EoRE I R R R S T R R R

*/

public <T> T find(Class<T> entityClass, Object primaryKey,
LockModeType lockMode,
Map<String, Object> properties);

/**

* Get an instance, whose state may be lazily fetched.

* If the requested instance does not exist in the database,

* the <code>EntityNotFoundException</code> is thrown when the instance
* state is first accessed. (The persistence provider runtime is

* permitted to throw the <code>EntityNotFoundException</code> when
* <code>getReference</code> is called.)

* The application should not expect that the instance state will

* be available upon detachment, unless it was accessed by the

* gpplication while the entity manager was open.

* @param entityClass entity class

* @param primaryKey primary key

* @return the found entity instance

* @throws IllegalArgumentException if the first argument does

* not denote an entity type or the second argument is

* not a valid type for that entity's primary key or

* is null

* @throws EntityNotFoundException if the entity state

*

cannot be accessed

*/

public <T> T getReference((Class<T> entityClass,
Object primaryKey);

/**

Synchronize the persistence context to the

underlying database.

@throws TransactionRequiredException if there is
no transaction or if the entity manager has not been
joined to the current transaction

@throws PersistenceException if the flush fails

* 0% F X Xk

Jakarta Persistence 57

3.1. EntityManager

*/
public void flush();

/**

* Set the flush mode that applies to all objects contained
* in the persistence context.

* @param flushMode flush mode

*/

public void setFlushMode(FlushModeType flushMode);

/**

* Get the flush mode that applies to all objects contained
* in the persistence context.

* @return flushMode

*/

public FlushModeType getFlushMode();

/**

Lock an entity instance that is contained in the persistence
context with the specified lock mode type.
<p>If a pessimistic lock mode type is specified and the entity
contains a version attribute, the persistence provider must
also perform optimistic version checks when obtaining the
database lock. If these checks fail, the
<code>0OptimisticLockException</code> will be thrown.
<p>If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:

<1i> the <code>PessimisticlLockException</code> will be thrown if the database
locking failure causes transaction-level rollback
 the <code>LockTimeoutException</code> will be thrown if the database
locking failure causes only statement-level rollback

@param entity entity instance
@param lockMode Tlock mode
@throws IllegalArgumentException if the instance is not an
entity or is a detached entity
@throws TransactionRequiredException if there is no
transaction or if invoked on an entity manager which
has not been joined to the current transaction
@throws EntityNotFoundException if the entity does not exist
in the database when pessimistic locking 1is
performed
@throws OptimisticLockException if the optimistic version
check fails
@throws PessimisticLockException if pessimistic locking fails
and the transaction is rolled back
@throws LockTimeoutException if pessimistic locking fails and

E R R R R R R R R R R N N R R R R N N N N R R N S S N T o

58 Jakarta Persistence

*

* @throws
*

*/

3.1. EntityManager

only the statement is rolled back
PersistenceException if an unsupported lock call
is made

public void lock(Object entity, LockModeType lockMode);

/**

Lock an
context
propert
<p>If a
contain
also pe

<code>0
<p>If t

 th
lock
 th
lock

<p>If a
it is s
<p>Port
mechani
be obse
@param
@param
@param

@throws

@throws

@throws

@throws
@throws

@throws

E O I R T T R T B R T R R N B . S T R N N I N N I SR R R N R T N S N R

@throws

entity instance that is contained in the persistence
with the specified lock mode type and with specified
ies.

pessimistic lock mode type is specified and the entity
s a version attribute, the persistence provider must
rform optimistic version checks when obtaining the

database lock. If these checks fail, the

ptimisticLockException</code> will be thrown.
he lock mode type is pessimistic and the entity instance

is found but cannot be locked:

e <code>PessimisticLockException</code> will be thrown if the database
ing failure causes transaction-level rollback

e <code>LockTimeoutException</code> will be thrown if the database

ing failure causes only statement-level rollback

vendor-specific property or hint is not recognized,
ilently ignored.
able applications should not rely on the standard timeout

hint. Depending on the database in use and the locking

sms used by the provider, the hint may or may not
rved.
entity entity instance
lockMode Tlock mode
properties standard and vendor-specific properties
and hints
I1legalArgumentException if the instance is not an
entity or is a detached entity
TransactionRequiredException if there is no
transaction or if invoked on an entity manager which
has not been joined to the current transaction
EntityNotFoundException if the entity does not exist
in the database when pessimistic locking is
performed
OptimisticLockException if the optimistic version
check fails
PessimisticLockException if pessimistic locking fails
and the transaction is rolled back
LockTimeoutException if pessimistic locking fails and
only the statement is rolled back
PersistenceException if an unsupported lock call

Jakarta Persistence 59

3.1. EntityManager

k3 is made
* @since 2.0
*/

public void lock(Object entity, LockModeType lockMode,
Map<String, Object> properties);

/**

* Refresh the state of the instance from the database,

* overwriting changes made to the entity, if any.

* @param entity entity instance

* @throws IllegalArqumentException if the instance is not
* an entity or the entity is not managed

* @throws TransactionRequiredException if there is no

* transaction when invoked on a container-managed
* entity manager of type <code>PersistenceContextType.TRANSACTION</code>
* @throws EntityNotFoundException if the entity no longer
* exists in the database

*/

public void refresh(Object entity);

/**

Refresh the state of the instance from the database, using
the specified properties, and overwriting changes made to
the entity, if any.
<p> If a vendor-specific property or hint is not recognized,
it is silently ignored.
@param entity entity instance
@param properties standard and vendor-specific properties
and hints
@throws IllegalArgumentException if the instance is not
an entity or the entity is not managed
@throws TransactionRequiredException if there is no
transaction when invoked on a container-managed
entity manager of type <code>PersistenceContextType.TRANSACTION</code>
@throws EntityNotFoundException if the entity no longer
exists in the database
@since 2.0

* 0% %k F X % X X X X X X X X X *

*/
public void refresh(Object entity,
Map<String, Object> properties);

/**

Refresh the state of the instance from the database,
overwriting changes made to the entity, if any, and

lock it with respect to given lock mode type.

<p>If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:

* 0% F X Xk

60 Jakarta Persistence

3.1. EntityManager

<1i> the <code>PessimisticLockException</code> will be thrown if the database
locking failure causes transaction-level rollback
<1i> the <code>LockTimeoutException</code> will be thrown if the
database locking failure causes only statement-level
rollback.

@param entity entity instance
@param lockMode 1lock mode
@throws IllegalArgumentException if the instance is not
an entity or the entity is not managed
@throws TransactionRequiredException if invoked on a
container-managed entity manager of type
<code>PersistenceContextType.TRANSACTION</code> when there is
no transaction; if invoked on an extended entity manager when
there is no transaction and a lock mode other than <code>NONE</code>
has been specified; or if invoked on an extended entity manager
that has not been joined to the current transaction and a
lock mode other than <code>NONE</code> has been specified
@throws EntityNotFoundException if the entity no longer exists
in the database
@throws PessimisticLockException if pessimistic locking fails
and the transaction is rolled back
@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back
@throws PersistenceException if an unsupported lock call
is made
@since 2.0

L B R N R R R S R R SR R S S R N R R . S

*/
public void refresh(Object entity, LockModeType lockMode);

/**

* Refresh the state of the instance from the database,

* overwriting changes made to the entity, if any, and

* lock it with respect to given lock mode type and with

* specified properties.

* <p>If the lock mode type is pessimistic and the entity instance

* is found but cannot be locked:

*

* <1i> the <code>PessimisticLockException</code> will be thrown if the database
* locking failure causes transaction-level rollback

* <1i> the <code>LockTimeoutException</code> will be thrown if the database
* locking failure causes only statement-level rollback

*

* <p>If a vendor-specific property or hint is not recognized,

* it is silently ignored.

* <p>Portable applications should not rely on the standard timeout

* hint. Depending on the database in use and the locking

*

mechanisms used by the provider, the hint may or may not

Jakarta Persistence 61

3.1. EntityManager

be observed.
@param entity entity instance
@param lockMode 1lock mode
@param properties standard and vendor-specific properties

and hints
@throws IllegalArgumentException if the instance is not

an entity or the entity is not managed
@throws TransactionRequiredException if invoked on a

container-managed entity manager of type

<code>PersistenceContextType.TRANSACTION</code> when there is

no transaction; if invoked on an extended entity manager when

there is no transaction and a lock mode other than <code>NONE</code>

has been specified; or if invoked on an extended entity manager

that has not been joined to the current transaction and a

lock mode other than <code>NONE</code> has been specified
@throws EntityNotFoundException if the entity no longer exists

in the database

@throws PessimisticLockException if pessimistic locking fails

and the transaction is rolled back
@throws LockTimeoutException if pessimistic locking fails and

only the statement is rolled back
@throws PersistenceException if an unsupported lock call

is made

@since 2.0

E B R I R T R R N SR R N S N . SR R N SN R N S

*/
public void refresh(Object entity, LockModeType lockMode,
Map<String, Object> properties);

/**

* (lear the persistence context, causing all managed

* entities to become detached. Changes made to entities that
* have not been flushed to the database will not be

* persisted.

*/

public void clear();

/'k'k

* Remove the given entity from the persistence context, causing
* a managed entity to become detached. Unflushed changes made
* to the entity if any (including removal of the entity),

* will not be synchronized to the database. Entities which

* previously referenced the detached entity will continue to

* reference it.

* @param entity entity instance

* @throws IllegalArgumentException if the instance is not an

* entity

* @since 2.0

*
~

62 Jakarta Persistence

3.1. EntityManager

public void detach(Object entity);

/'k*

* Check if the instance is a managed entity instance belonging

* to the current persistence context.

* @param entity entity instance

@return boolean indicating if entity is in persistence context
* @throws IllegalArgumentException if not an entity

*/

public boolean contains(Object entity);

*

/**

Get the current lock mode for the entity instance.

@param entity entity instance

@return lock mode

@throws TransactionRequiredException if there is no
transaction or if the entity manager has not been
joined to the current transaction

@throws IllegalArgumentException if the instance is not a

* 0% % * X X

*

* managed entity and a transaction is active
* @since 2.0
*/

public LockModeType getLockMode(Object entity);

/'k'k

* Set an entity manager property or hint.

* If a vendor-specific property or hint is not recognized, it is
* silently ignored.

* @param propertyName name of property or hint

*

@param value value for property or hint
@throws IllegalArgumentException if the second arqument is

*

* not valid for the implementation
* @since 2.0
*/

public void setProperty(String propertyName, Object value);

/'k'k

Get the properties and hints and associated values that are in effect
for the entity manager. Changing the contents of the map does

not change the configuration in effect.

@return map of properties and hints in effect for entity manager
@since 2.0

* X %k X X

*
/
public Map<String, Object> getProperties();

/**

* Create an instance of <code>Query</code> for executing a
* Jakarta Persistence query language statement.

Jakarta Persistence 63

3.1. EntityManager

@param qlString a Jakarta Persistence query string

@return the new query instance

@throws IllegalArgumentException if the query string is
found to be invalid

* X % F

*/
public Query createQuery(String qlString);

/'k'k

Create an instance of <code>TypedQuery</code> for executing a
criteria query.

@param criteriaQuery a criteria query object

@return the new query instance

* X ok

*

* @throws IllegalArgumentException if the criteria query is
* found to be invalid

* @since 2.0

*/

public <T> TypedQuery<T> createQuery(CriteriaQuery<T> criteriaQuery);

/**

* Create an instance of <code>Query</code> for executing a criteria
* update query.

* @param updateQuery a criteria update query object

*

@return the new query instance
@throws IllegalArgumentException if the update query is

*

k3 found to be invalid
* @since 2.1
*/

public Query createQuery(CriterialUpdate updateQuery);

/**

* Create an instance of <code>Query</code> for executing a criteria
delete query.
@param deleteQuery a criteria delete query object
@return the new query instance
@throws IllegalArgumentException if the delete query is
found to be invalid
* @since 2.1
*/
public Query createQuery(CriteriaDelete deleteQuery);

* X % *

*

/**

* Create an instance of <code>TypedQuery</code> for executing a
Jakarta Persistence query language statement.

The select list of the query must contain only a single

item, which must be assignable to the type specified by

the <code>resultClass</code> argument.

@param qlString a Jakarta Persistence query string

@param resultClass the type of the query result

* X % * X

*

64 Jakarta Persistence

3.1. EntityManager

* @return the new query instance

* @throws IllegalArgumentException if the query string is found
* to be invalid or if the query result is found to

* not be assignable to the specified type

* @since 2.0

*/
public <T> TypedQuery<T> createQuery(String qlString, Class<T> resultClass);

/**

Create an instance of <code>Query</code> for executing a named query
(in the Jakarta Persistence query language or in native SQL).
@param name the name of a query defined in metadata
@return the new query instance
@throws IllegalArgumentException if a query has not been
defined with the given name or if the query string is
found to be invalid

* 0% X F X X *

*/
public Query createNamedQuery(String name);

/'k*

* Create an instance of <code>TypedQuery</code> for executing a
* Jakarta Persistence query language named query.

* The select list of the query must contain only a single

* jtem, which must be assignable to the type specified by

* the <code>resultClass</code> argument.

* @param name the name of a query defined in metadata

* @param resultClass the type of the query result

* @return the new query instance

* @throws IllegalArgumentException if a query has not been

* defined with the given name or if the query string is
* found to be invalid or if the query result is found to
* not be assignable to the specified type

* @since